These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19210724)

  • 1. Arsenic uptake and speciation in the rootless duckweed Wolffia globosa.
    Zhang X; Zhao FJ; Huang Q; Williams PN; Sun GX; Zhu YG
    New Phytol; 2009; 182(2):421-428. PubMed ID: 19210724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium accumulation in the rootless macrophyte Wolffia globosa and its potential for phytoremediation.
    Xie WY; Huang Q; Li G; Rensing C; Zhu YG
    Int J Phytoremediation; 2013; 15(4):385-97. PubMed ID: 23488004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa.
    Zhang X; Uroic MK; Xie WY; Zhu YG; Chen BD; McGrath SP; Feldmann J; Zhao FJ
    Environ Pollut; 2012 Jun; 165():18-24. PubMed ID: 22398017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic accumulation and speciation in the submerged macrophyte Ceratophyllum demersum L.
    Xue P; Yan C; Sun G; Luo Z
    Environ Sci Pollut Res Int; 2012 Nov; 19(9):3969-76. PubMed ID: 22434382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic uptake and speciation and the effects of phosphate nutrition in hydroponically grown kikuyu grass (Pennisetum clandestinum Hochst).
    Panuccio MR; Logoteta B; Beone GM; Cagnin M; Cacco G
    Environ Sci Pollut Res Int; 2011 Aug; 19(7):3046-53. PubMed ID: 22367495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frond architecture of the rootless duckweed Wolffia globosa.
    Yang J; Zhao X; Li G; Hu S; Hou H
    BMC Plant Biol; 2021 Aug; 21(1):387. PubMed ID: 34416853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenite efflux is not enhanced in the arsenate-tolerant phenotype of Holcus lanatus.
    Logoteta B; Xu XY; Macnair MR; McGrath SP; Zhao FJ
    New Phytol; 2009; 183(2):340-348. PubMed ID: 19402874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata.
    Su YH; McGrath SP; Zhu YG; Zhao FJ
    New Phytol; 2008; 180(2):434-441. PubMed ID: 18662326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides.
    Zhang X; Lin AJ; Zhao FJ; Xu GZ; Duan GL; Zhu YG
    Environ Pollut; 2008 Dec; 156(3):1149-55. PubMed ID: 18457908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.
    Hatayama M; Sato T; Shinoda K; Inoue C
    J Biosci Bioeng; 2011 Mar; 111(3):326-32. PubMed ID: 21185228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knocking out ACR2 does not affect arsenic redox status in Arabidopsis thaliana: implications for as detoxification and accumulation in plants.
    Liu W; Schat H; Bliek M; Chen Y; McGrath SP; George G; Salt DE; Zhao FJ
    PLoS One; 2012; 7(8):e42408. PubMed ID: 22879969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The metabolism of arsenite and arsenate by the rat.
    Lerman S; Clarkson TW
    Fundam Appl Toxicol; 1983; 3(4):309-14. PubMed ID: 6628893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid reduction of arsenate in the medium mediated by plant roots.
    Xu XY; McGrath SP; Zhao FJ
    New Phytol; 2007; 176(3):590-599. PubMed ID: 17692074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa.
    Wang Z; Luo Z; Yan C
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7286-95. PubMed ID: 23636594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans).
    Sandhi A; Landberg T; Greger M
    Environ Pollut; 2018 Jun; 237():1098-1105. PubMed ID: 29157972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production.
    Román-Ponce B; Ramos-Garza J; Arroyo-Herrera I; Maldonado-Hernández J; Bahena-Osorio Y; Vásquez-Murrieta MS; Wang ET
    Arch Microbiol; 2018 Aug; 200(6):883-895. PubMed ID: 29476206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Arsenic Biotransformation by a Typical Bryophyte Physcomitrella patens.
    Yin X; Wang L; Liu Y; Jiang T; Gao J
    Bull Environ Contam Toxicol; 2017 Feb; 98(2):251-256. PubMed ID: 27933331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes.
    Guo P; Gong Y; Wang C; Liu X; Liu J
    Environ Toxicol Chem; 2011 Aug; 30(8):1754-9. PubMed ID: 21560143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamentals and application in phytoremediation of an efficient arsenate reducing bacterium Pseudomonas putida ARS1.
    Wang ZW; Yang G; Chen J; Zhou Y; Núñez Delgado A; Cui HL; Duan GL; Rosen BP; Zhu YG
    J Environ Sci (China); 2024 Mar; 137():237-244. PubMed ID: 37980011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.
    Bahar MM; Megharaj M; Naidu R
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2663-8. PubMed ID: 26438364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.