These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 19211317)
1. Robot assisted gait training with active leg exoskeleton (ALEX). Banala SK; Kim SH; Agrawal SK; Scholz JP IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):2-8. PubMed ID: 19211317 [TBL] [Abstract][Full Text] [Related]
2. Assist-as-Needed Robot-Aided Gait Training Improves Walking Function in Individuals Following Stroke. Srivastava S; Kao PC; Kim SH; Stegall P; Zanotto D; Higginson JS; Agrawal SK; Scholz JP IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):956-63. PubMed ID: 25314703 [TBL] [Abstract][Full Text] [Related]
3. Effects of wearable ankle robotics for stair and over-ground training on sub-acute stroke: a randomized controlled trial. Yeung LF; Lau CCY; Lai CWK; Soo YOY; Chan ML; Tong RKY J Neuroeng Rehabil; 2021 Jan; 18(1):19. PubMed ID: 33514393 [TBL] [Abstract][Full Text] [Related]
4. Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton. Koopman B; van Asseldonk EH; van der Kooij H J Neuroeng Rehabil; 2013 Jan; 10():3. PubMed ID: 23336754 [TBL] [Abstract][Full Text] [Related]
5. A wearable resistive robot facilitates locomotor adaptations during gait. Washabaugh EP; Krishnan C Restor Neurol Neurosci; 2018; 36(2):215-223. PubMed ID: 29526856 [TBL] [Abstract][Full Text] [Related]
7. Abnormal synergistic gait mitigation in acute stroke using an innovative ankle-knee-hip interlimb humanoid robot: a preliminary randomized controlled trial. Park C; Oh-Park M; Bialek A; Friel K; Edwards D; You JSH Sci Rep; 2021 Nov; 11(1):22823. PubMed ID: 34819515 [TBL] [Abstract][Full Text] [Related]
8. Effect of reducing assistance during robot-assisted gait training on step length asymmetry in patients with hemiplegic stroke: A randomized controlled pilot trial. Seo JS; Yang HS; Jung S; Kang CS; Jang S; Kim DH Medicine (Baltimore); 2018 Aug; 97(33):e11792. PubMed ID: 30113466 [TBL] [Abstract][Full Text] [Related]
9. Comparative Effects of Different Assistance Force During Robot-Assisted Gait Training on Locomotor Functions in Patients With Subacute Stroke: An Assessor-Blind, Randomized Controlled Trial. Park IJ; Park JH; Seong HY; You JSH; Kim SJ; Min JH; Ko HY; Shin YI Am J Phys Med Rehabil; 2019 Jan; 98(1):58-64. PubMed ID: 30142092 [TBL] [Abstract][Full Text] [Related]
10. Effects of selectively assisting impaired subtasks of walking in chronic stroke survivors. Fricke SS; Smits HJG; Bayón C; Buurke JH; van der Kooij H; van Asseldonk EHF J Neuroeng Rehabil; 2020 Oct; 17(1):143. PubMed ID: 33115480 [TBL] [Abstract][Full Text] [Related]
11. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696 [TBL] [Abstract][Full Text] [Related]
12. Gait Adaptation Using a Cable-Driven Active Leg Exoskeleton (C-ALEX) With Post-Stroke Participants. Hidayah R; Bishop L; Jin X; Chamarthy S; Stein J; Agrawal SK IEEE Trans Neural Syst Rehabil Eng; 2020 Sep; 28(9):1984-1993. PubMed ID: 32746320 [TBL] [Abstract][Full Text] [Related]
13. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke. Li L; Ding L; Chen N; Mao Y; Huang D; Li L Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020 [TBL] [Abstract][Full Text] [Related]
14. Robot-assisted gait training improves brachial-ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation: Randomized controlled trial. Han EY; Im SH; Kim BR; Seo MJ; Kim MO Medicine (Baltimore); 2016 Oct; 95(41):e5078. PubMed ID: 27741123 [TBL] [Abstract][Full Text] [Related]
15. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648 [TBL] [Abstract][Full Text] [Related]
16. Recovery and compensation after robotic assisted gait training in chronic stroke survivors. De Luca A; Vernetti H; Capra C; Pisu I; Cassiano C; Barone L; Gaito F; Danese F; Antonio Checchia G; Lentino C; Giannoni P; Casadio M Disabil Rehabil Assist Technol; 2019 Nov; 14(8):826-838. PubMed ID: 29741134 [No Abstract] [Full Text] [Related]
17. Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: A randomized controlled pilot trial. Bang DH; Shin WS NeuroRehabilitation; 2016 Apr; 38(4):343-9. PubMed ID: 27061162 [TBL] [Abstract][Full Text] [Related]
18. Ankle training with a robotic device improves hemiparetic gait after a stroke. Forrester LW; Roy A; Krebs HI; Macko RF Neurorehabil Neural Repair; 2011 May; 25(4):369-77. PubMed ID: 21115945 [TBL] [Abstract][Full Text] [Related]
19. An assistive controller for a lower-limb exoskeleton for rehabilitation after stroke, and preliminary assessment thereof. Murray SA; Ha KH; Goldfarb M Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4083-6. PubMed ID: 25570889 [TBL] [Abstract][Full Text] [Related]
20. Structural and functional improvements due to robot-assisted gait training in the stroke-injured brain. Yang HE; Kyeong S; Lee SH; Lee WJ; Ha SW; Kim SM; Kang H; Lee WM; Kang CS; Kim DH Neurosci Lett; 2017 Jan; 637():114-119. PubMed ID: 27884739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]