These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19211327)

  • 1. Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
    Hincapie JG; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):80-90. PubMed ID: 19211327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EMG-based control for a C5/C6 spinal cord injury upper extremity neuroprosthesis.
    Hincapie JG; Kirsch RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2432-5. PubMed ID: 18002485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive neural network controller for an upper extremity neuroprosthesis.
    Hincapie JG; Blana D; Chadwick E; Kirsch RF
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4133-6. PubMed ID: 17271211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
    Giuffrida JP; Crago PE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):147-52. PubMed ID: 16003892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Musculoskeletal model-guided, customizable selection of shoulder and elbow muscles for a C5 SCI neuroprosthesis.
    Hincapie JG; Blana D; Chadwick EK; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):255-63. PubMed ID: 18586604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing remaining voluntary muscle synergies to control FES elbow extension after spinal cord injury.
    Giuffrida JP; Crago PE
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4118-21. PubMed ID: 17271207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems.
    Blana D; Hincapie JG; Chadwick EK; Kirsch RF
    J Biomech; 2008; 41(8):1714-21. PubMed ID: 18420213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
    Blana D; Kirsch RF; Chadwick EK
    Med Biol Eng Comput; 2009 May; 47(5):533-42. PubMed ID: 19343388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimized proportional-derivative controller for the human upper extremity with gravity.
    Jagodnik KM; Blana D; van den Bogert AJ; Kirsch RF
    J Biomech; 2015 Oct; 48(13):3692-700. PubMed ID: 26358531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMG-based prediction of shoulder and elbow kinematics in able-bodied and spinal cord injured individuals.
    Au AT; Kirsch RF
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):471-80. PubMed ID: 11204038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of muscle activity during loaded movements of the upper limb.
    Tibold R; Fuglevand AJ
    J Neuroeng Rehabil; 2015 Jan; 12(1):6. PubMed ID: 25592397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of training set on prediction of elbow trajectory from shoulder trajectory during reaching to targets.
    Kaliki RR; Davoodi R; Loeb GE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5483-6. PubMed ID: 17946704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of leg muscle activities from arm muscle activities in arm and leg cycling.
    Radeleczki B; Mravcsik M; Bozheim L; Laczko J
    Anat Rec (Hoboken); 2023 Apr; 306(4):710-719. PubMed ID: 35712823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities.
    Ambrosini E; Ferrante S; Schauer T; Klauer C; Gaffuri M; Ferrigno G; Pedrocchi A
    J Electromyogr Kinesiol; 2014 Apr; 24(2):307-17. PubMed ID: 24529798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Reinforcement Learning for Control of Time-Varying Musculoskeletal Systems With High Fatigability: A Feasibility Study.
    Abreu J; Crowder DC; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2613-2622. PubMed ID: 36063517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of postural muscle fatigue on the relation between segmental posture and movement.
    Chabran E; Maton B; Fourment A
    J Electromyogr Kinesiol; 2002 Feb; 12(1):67-79. PubMed ID: 11804813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoration of complex movement in the paralyzed upper limb.
    Hasse BA; Sheets DEG; Holly NL; Gothard KM; Fuglevand AJ
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35728568
    [No Abstract]   [Full Text] [Related]  

  • 19. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting functional force production capabilities of upper extremity functional electrical stimulation neuroprostheses: a proof of concept study.
    Schearer EM; Wolf DN
    J Neural Eng; 2020 Feb; 17(1):016051. PubMed ID: 31910397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.