These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19211509)

  • 1. Emerging roles of NAD+ and its metabolites in cell signaling.
    Koch-Nolte F; Haag F; Guse AH; Lund F; Ziegler M
    Sci Signal; 2009 Feb; 2(57):mr1. PubMed ID: 19211509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium mobilizing second messengers derived from NAD.
    Guse AH
    Biochim Biophys Acta; 2015 Sep; 1854(9):1132-7. PubMed ID: 25534250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity.
    Ugamraj HS; Dang K; Ouisse LH; Buelow B; Chini EN; Castello G; Allison J; Clarke SC; Davison LM; Buelow R; Deng R; Iyer S; Schellenberger U; Manika SN; Bijpuria S; Musnier A; Poupon A; Cuturi MC; van Schooten W; Dalvi P
    MAbs; 2022; 14(1):2095949. PubMed ID: 35867844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling.
    Ziegler M
    Eur J Biochem; 2000 Mar; 267(6):1550-64. PubMed ID: 10712584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymology of Ca
    Guse AH
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct NAD(P)H hydrolysis into ADP-ribose(P) and nicotinamide induced by reactive oxygen species: a new mechanism of oxygen radical toxicity.
    Tavazzi B; Di Pierro D; Amorini AM; Fazzina G; Galvano M; Lupi A; Giardina B; Lazzarino G
    Free Radic Res; 2000 Jul; 33(1):1-12. PubMed ID: 10826916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-ordination of Ca(2+) signalling in mammalian cells by the new Ca(2+)-releasing messenger NAADP.
    Cancela JM; Charpentier G; Petersen OH
    Pflugers Arch; 2003 Jun; 446(3):322-7. PubMed ID: 12799901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulator and messenger functions of cyclic ADP-ribose in calcium signaling.
    Lee HC
    Recent Prog Horm Res; 1996; 51():355-88; discussion 389. PubMed ID: 8701086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium signaling by cyclic ADP-ribose and NAADP. A decade of exploration.
    Lee HC
    Cell Biochem Biophys; 1998; 28(1):1-17. PubMed ID: 9386889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers.
    Lee HC
    Annu Rev Pharmacol Toxicol; 2001; 41():317-45. PubMed ID: 11264460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
    Zhao K; Harshaw R; Chai X; Marmorstein R
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8563-8. PubMed ID: 15150415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unified mechanism of enzymatic synthesis of two calcium messengers: cyclic ADP-ribose and NAADP.
    Lee HC
    Biol Chem; 1999; 380(7-8):785-93. PubMed ID: 10494827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two different but converging messenger pathways to intracellular Ca(2+) release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate.
    Cancela JM; Gerasimenko OV; Gerasimenko JV; Tepikin AV; Petersen OH
    EMBO J; 2000 Jun; 19(11):2549-57. PubMed ID: 10835353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The new life of a centenarian: signalling functions of NAD(P).
    Berger F; Ramírez-Hernández MH; Ziegler M
    Trends Biochem Sci; 2004 Mar; 29(3):111-8. PubMed ID: 15003268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of calcium-mobilizing metabolites by a novel member of the ADP-ribosyl cyclase family expressed in Schistosoma mansoni.
    Goodrich SP; Muller-Steffner H; Osman A; Moutin MJ; Kusser K; Roberts A; Woodland DL; Randall TD; Kellenberger E; LoVerde PT; Schuber F; Lund FE
    Biochemistry; 2005 Aug; 44(33):11082-97. PubMed ID: 16101292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers.
    Cancela JM; Van Coppenolle F; Galione A; Tepikin AV; Petersen OH
    EMBO J; 2002 Mar; 21(5):909-19. PubMed ID: 11867519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD and ADP-ribose metabolism in mitochondria.
    Dölle C; Rack JG; Ziegler M
    FEBS J; 2013 Aug; 280(15):3530-41. PubMed ID: 23617329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD+ metabolism in health and disease.
    Belenky P; Bogan KL; Brenner C
    Trends Biochem Sci; 2007 Jan; 32(1):12-9. PubMed ID: 17161604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for Tpt1-catalyzed 2'-PO
    Jacewicz A; Dantuluri S; Shuman S
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2312999120. PubMed ID: 37883434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin B3, the nicotinamide adenine dinucleotides and aging.
    Xu P; Sauve AA
    Mech Ageing Dev; 2010 Apr; 131(4):287-98. PubMed ID: 20307564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.