BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 19211705)

  • 1. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis.
    Adamczyk BJ; Fernandez DE
    Plant Physiol; 2009 Apr; 149(4):1713-23. PubMed ID: 19211705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation.
    Liu Y; Cui S; Wu F; Yan S; Lin X; Du X; Chong K; Schilling S; Theißen G; Meng Z
    Plant Cell; 2013 Apr; 25(4):1288-303. PubMed ID: 23613199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters.
    Verelst W; Saedler H; Münster T
    Plant Physiol; 2007 Jan; 143(1):447-60. PubMed ID: 17071640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MIKC* MADS-box proteins: conserved regulators of the gametophytic generation of land plants.
    Zobell O; Faigl W; Saedler H; Münster T
    Mol Biol Evol; 2010 May; 27(5):1201-11. PubMed ID: 20080864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The MADS domain protein DIANA acts together with AGAMOUS-LIKE80 to specify the central cell in Arabidopsis ovules.
    Bemer M; Wolters-Arts M; Grossniklaus U; Angenent GC
    Plant Cell; 2008 Aug; 20(8):2088-101. PubMed ID: 18713950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AGAMOUS-LIKE13, a putative ancestor for the E functional genes, specifies male and female gametophyte morphogenesis.
    Hsu WH; Yeh TJ; Huang KY; Li JY; Chen HY; Yang CH
    Plant J; 2014 Jan; 77(1):1-15. PubMed ID: 24164574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thaliana.
    Xia C; Wang YJ; Liang Y; Niu QK; Tan XY; Chu LC; Chen LQ; Zhang XQ; Ye D
    Plant J; 2014 Sep; 79(5):741-56. PubMed ID: 24923357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants.
    Kaufmann K; Melzer R; Theissen G
    Gene; 2005 Mar; 347(2):183-98. PubMed ID: 15777618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MADS-complexes regulate transcriptome dynamics during pollen maturation.
    Verelst W; Twell D; de Folter S; Immink R; Saedler H; Münster T
    Genome Biol; 2007; 8(11):R249. PubMed ID: 18034896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The major clades of MADS-box genes and their role in the development and evolution of flowering plants.
    Becker A; Theissen G
    Mol Phylogenet Evol; 2003 Dec; 29(3):464-89. PubMed ID: 14615187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network.
    Espinosa-Soto C; Immink RG; Angenent GC; Alvarez-Buylla ER; de Folter S
    BMC Syst Biol; 2014 Jan; 8():9. PubMed ID: 24468197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An atlas of type I MADS box gene expression during female gametophyte and seed development in Arabidopsis.
    Bemer M; Heijmans K; Airoldi C; Davies B; Angenent GC
    Plant Physiol; 2010 Sep; 154(1):287-300. PubMed ID: 20631316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes.
    Kwantes M; Liebsch D; Verelst W
    Mol Biol Evol; 2012 Jan; 29(1):293-302. PubMed ID: 21813465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses.
    Kofuji R; Sumikawa N; Yamasaki M; Kondo K; Ueda K; Ito M; Hasebe M
    Mol Biol Evol; 2003 Dec; 20(12):1963-77. PubMed ID: 12949148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytological and Transcriptomic Analyses Reveal Important Roles of
    Wang S; Lu J; Song XF; Ren SC; You C; Xu J; Liu CM; Ma H; Chang F
    Plant Physiol; 2017 Nov; 175(3):1186-1202. PubMed ID: 28916592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollen-Expressed Leucine-Rich Repeat Extensins Are Essential for Pollen Germination and Growth.
    Wang X; Wang K; Yin G; Liu X; Liu M; Cao N; Duan Y; Gao H; Wang W; Ge W; Wang J; Li R; Guo Y
    Plant Physiol; 2018 Mar; 176(3):1993-2006. PubMed ID: 29269573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein.
    Kaufmann K; Anfang N; Saedler H; Theissen G
    Mol Genet Genomics; 2005 Sep; 274(2):103-18. PubMed ID: 16080001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conserved leucine zipper-like motif accounts for strong tetramerization capabilities of SEPALLATA-like MADS-domain transcription factors.
    Rümpler F; Theißen G; Melzer R
    J Exp Bot; 2018 Apr; 69(8):1943-1954. PubMed ID: 29474620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility.
    Enns LC; Kanaoka MM; Torii KU; Comai L; Okada K; Cleland RE
    Plant Mol Biol; 2005 Jun; 58(3):333-49. PubMed ID: 16021399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development.
    Ye Q; Zhu W; Li L; Zhang S; Yin Y; Ma H; Wang X
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6100-5. PubMed ID: 20231470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.