These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 19212133)
1. Challenges in the determination of early predictors of cerebral malaria: lessons from the human disease and the experimental murine models. Martins YC; Carvalho LJ; Daniel-Ribeiro CT Neuroimmunomodulation; 2009; 16(2):134-45. PubMed ID: 19212133 [TBL] [Abstract][Full Text] [Related]
2. Essential role of tumor necrosis factor and other cytokines in the pathogenesis of cerebral malaria: experimental and clinical studies. Grau GE Verh K Acad Geneeskd Belg; 1992; 54(2):155-75. PubMed ID: 1357836 [TBL] [Abstract][Full Text] [Related]
3. Natural regulatory T cells mediate the development of cerebral malaria by modifying the pro-inflammatory response. Wu JJ; Chen G; Liu J; Wang T; Zheng W; Cao YM Parasitol Int; 2010 Jun; 59(2):232-41. PubMed ID: 20219695 [TBL] [Abstract][Full Text] [Related]
4. Cerebral malaria protection in mice by species-specific Plasmodium coinfection is associated with reduced CC chemokine levels in the brain. Clark CJ; Phillips RS Parasite Immunol; 2011 Nov; 33(11):637-41. PubMed ID: 21851365 [TBL] [Abstract][Full Text] [Related]
5. Schistosoma co-infection protects against brain pathology but does not prevent severe disease and death in a murine model of cerebral malaria. Bucher K; Dietz K; Lackner P; Pasche B; Fendel R; Mordmüller B; Ben-Smith A; Hoffmann WH Int J Parasitol; 2011 Jan; 41(1):21-31. PubMed ID: 20708623 [TBL] [Abstract][Full Text] [Related]
6. Plasmodium berghei: cerebral malaria in CBA mice is not clearly related to plasma TNF levels or intensity of histopathological changes. Carvalho LJ; Lenzi HL; Pelajo-Machado M; Oliveira DN; Daniel-Ribeiro CT; Ferreira-da-Cruz MF Exp Parasitol; 2000 May; 95(1):1-7. PubMed ID: 10864512 [TBL] [Abstract][Full Text] [Related]
7. Malaria mimicry with tumor necrosis factor. Contrasts between species of murine malaria and Plasmodium falciparum. Clark IA; MacMicking JD; Gray KM; Rockett KA; Cowden WB Am J Pathol; 1992 Feb; 140(2):325-36. PubMed ID: 1739126 [TBL] [Abstract][Full Text] [Related]
8. Cerebral malaria: role of microparticles and platelets in alterations of the blood-brain barrier. Combes V; Coltel N; Faille D; Wassmer SC; Grau GE Int J Parasitol; 2006 May; 36(5):541-6. PubMed ID: 16600245 [TBL] [Abstract][Full Text] [Related]
9. Profiles of cytokine production in relation with susceptibility to cerebral malaria. de Kossodo S; Grau GE J Immunol; 1993 Nov; 151(9):4811-20. PubMed ID: 8409439 [TBL] [Abstract][Full Text] [Related]
11. Cerebral malaria: what is known and what is on research. Gay F; Zougbédé S; N'dilimabaka N; Rebollo A; Mazier D; Moreno A Rev Neurol (Paris); 2012 Mar; 168(3):239-56. PubMed ID: 22386676 [TBL] [Abstract][Full Text] [Related]
12. Coincident parasite and CD8 T cell sequestration is required for development of experimental cerebral malaria. McQuillan JA; Mitchell AJ; Ho YF; Combes V; Ball HJ; Golenser J; Grau GE; Hunt NH Int J Parasitol; 2011 Feb; 41(2):155-63. PubMed ID: 20828575 [TBL] [Abstract][Full Text] [Related]
13. Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. Yañez DM; Manning DD; Cooley AJ; Weidanz WP; van der Heyde HC J Immunol; 1996 Aug; 157(4):1620-4. PubMed ID: 8759747 [TBL] [Abstract][Full Text] [Related]
14. Behavioural and histopathological alterations in mice with cerebral malaria. Lackner P; Beer R; Heussler V; Goebel G; Rudzki D; Helbok R; Tannich E; Schmutzhard E Neuropathol Appl Neurobiol; 2006 Apr; 32(2):177-88. PubMed ID: 16599946 [TBL] [Abstract][Full Text] [Related]
15. Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and noncerebral malaria. Sanni LA; Thomas SR; Tattam BN; Moore DE; Chaudhri G; Stocker R; Hunt NH Am J Pathol; 1998 Feb; 152(2):611-9. PubMed ID: 9466588 [TBL] [Abstract][Full Text] [Related]
17. Anxiety-like behavior and proinflammatory cytokine levels in the brain of C57BL/6 mice infected with Plasmodium berghei (strain ANKA). de Miranda AS; Lacerda-Queiroz N; de Carvalho Vilela M; Rodrigues DH; Rachid MA; Quevedo J; Teixeira AL Neurosci Lett; 2011 Mar; 491(3):202-6. PubMed ID: 21256928 [TBL] [Abstract][Full Text] [Related]
18. Pathogenic T cells in cerebral malaria. Rénia L; Potter SM; Mauduit M; Rosa DS; Kayibanda M; Deschemin JC; Snounou G; Grüner AC Int J Parasitol; 2006 May; 36(5):547-54. PubMed ID: 16600241 [TBL] [Abstract][Full Text] [Related]
19. Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. Potter S; Chan-Ling T; Ball HJ; Mansour H; Mitchell A; Maluish L; Hunt NH Int J Parasitol; 2006 Apr; 36(4):485-96. PubMed ID: 16500656 [TBL] [Abstract][Full Text] [Related]
20. Plasmodium berghei: is nitric oxide involved in the pathogenesis of mouse cerebral malaria? Asensio VC; Oshima H; Falanga PB Exp Parasitol; 1993 Aug; 77(1):111-7. PubMed ID: 8344400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]