These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 192123)
1. The role of metals in enzyme activity. Riordan JF Ann Clin Lab Sci; 1977; 7(2):119-29. PubMed ID: 192123 [TBL] [Abstract][Full Text] [Related]
2. Flexibility of metal binding sites in proteins on a database scale. Babor M; Greenblatt HM; Edelman M; Sobolev V Proteins; 2005 May; 59(2):221-30. PubMed ID: 15726624 [TBL] [Abstract][Full Text] [Related]
3. The interaction of catalytic metal ions and ionizing groups in equilibrium studies and in transient intermediates of metal-substituted alcohol dehydrogenases. Maret W; Gerber M; Zeppezauer M; Dunn MF Prog Clin Biol Res; 1985; 174():181-91. PubMed ID: 3885258 [TBL] [Abstract][Full Text] [Related]
4. Biochemical effects of zinc difficiency: changes in activities of zinc-dependent enzymes and ribonucleic acid and deoxyribonucleic acid content of tissues. Prasad AS; Oberleas D; Miller ER; Luecke RW J Lab Clin Med; 1971 Jan; 77(1):144-52. PubMed ID: 5540423 [No Abstract] [Full Text] [Related]
5. Metal protein interactions. Sarkar B Prog Food Nutr Sci; 1987; 11(3-4):363-400. PubMed ID: 3328221 [TBL] [Abstract][Full Text] [Related]
6. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Wang J; Stieglitz KA; Kantrowitz ER Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627 [TBL] [Abstract][Full Text] [Related]
7. Metal transfer as a mechanism for metallothionein-mediated metal detoxification. Roesijadi G Cell Mol Biol (Noisy-le-grand); 2000 Mar; 46(2):393-405. PubMed ID: 10774928 [TBL] [Abstract][Full Text] [Related]
12. Metal-ion induced conformational changes in alkaline phosphatase from E. coli assessed by limited proteolysis. Bucević-Popović V; Pavela-Vrancic M; Dieckmann R Biochimie; 2004 Jun; 86(6):403-9. PubMed ID: 15358057 [TBL] [Abstract][Full Text] [Related]
13. Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Maret W Biometals; 2011 Jun; 24(3):411-8. PubMed ID: 21221719 [TBL] [Abstract][Full Text] [Related]
14. The application of magnetic resonance methods to the study of enzyme structures and action. Knowles PF Essays Biochem; 1972; 8():79-106. PubMed ID: 4344388 [No Abstract] [Full Text] [Related]
15. Structural insights into protein-metal ion partnerships. Barondeau DP; Getzoff ED Curr Opin Struct Biol; 2004 Dec; 14(6):765-74. PubMed ID: 15582401 [TBL] [Abstract][Full Text] [Related]
16. Alkaline phosphatase catalysis is ultrasensitive to charge sequestered between the active site zinc ions. Nikolic-Hughes I; O'brien PJ; Herschlag D J Am Chem Soc; 2005 Jul; 127(26):9314-5. PubMed ID: 15984827 [TBL] [Abstract][Full Text] [Related]
17. Modeling of metal interaction geometries for protein-ligand docking. Seebeck B; Reulecke I; Kämper A; Rarey M Proteins; 2008 May; 71(3):1237-54. PubMed ID: 18041759 [TBL] [Abstract][Full Text] [Related]
18. Role of metal ions in goat carboxypeptidase A-catalysed hydrolysis of acyl peptides. Dua RD; Gupta KK Biochem Int; 1984 Sep; 9(3):379-89. PubMed ID: 6508815 [TBL] [Abstract][Full Text] [Related]
20. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination. Dokmanić I; Sikić M; Tomić S Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]