These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
660 related articles for article (PubMed ID: 19212837)
1. Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature. López-Olmeda JF; Sánchez-Vázquez FJ Chronobiol Int; 2009 Feb; 26(2):200-18. PubMed ID: 19212837 [TBL] [Abstract][Full Text] [Related]
2. Light and temperature cycles as zeitgebers of zebrafish (Danio rerio) circadian activity rhythms. López-Olmeda JF; Madrid JA; Sánchez-Vázquez FJ Chronobiol Int; 2006; 23(3):537-50. PubMed ID: 16753940 [TBL] [Abstract][Full Text] [Related]
3. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa. Ellis DJ; Firth BT; Belan I Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837 [TBL] [Abstract][Full Text] [Related]
4. Feeding entrainment of daily rhythms of locomotor activity and clock gene expression in zebrafish brain. Sanchez JA; Sanchez-Vazquez FJ Chronobiol Int; 2009 Aug; 26(6):1120-35. PubMed ID: 19731109 [TBL] [Abstract][Full Text] [Related]
5. Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions. López-Olmeda JF; Tartaglione EV; de la Iglesia HO; Sánchez-Vázquez FJ Chronobiol Int; 2010 Aug; 27(7):1380-400. PubMed ID: 20795882 [TBL] [Abstract][Full Text] [Related]
6. Synchronisation to light and feeding time of circadian rhythms of spawning and locomotor activity in zebrafish. Blanco-Vives B; Sánchez-Vázquez FJ Physiol Behav; 2009 Sep; 98(3):268-75. PubMed ID: 19486906 [TBL] [Abstract][Full Text] [Related]
7. Synergic entrainment of Drosophila's circadian clock by light and temperature. Yoshii T; Vanin S; Costa R; Helfrich-Förster C J Biol Rhythms; 2009 Dec; 24(6):452-64. PubMed ID: 19926805 [TBL] [Abstract][Full Text] [Related]
8. Circadian entrainment to light-dark cycles involves extracellular nitric oxide communication within the suprachiasmatic nuclei. Plano SA; Golombek DA; Chiesa JJ Eur J Neurosci; 2010 Mar; 31(5):876-82. PubMed ID: 20180840 [TBL] [Abstract][Full Text] [Related]
9. Effects of light and melatonin treatment on body temperature and melatonin secretion daily rhythms in a diurnal rodent, the fat sand rat. Schwimmer H; Mursu N; Haim A Chronobiol Int; 2010 Aug; 27(7):1401-19. PubMed ID: 20795883 [TBL] [Abstract][Full Text] [Related]
10. Paradoxical masking effects of bright photophase and high temperature in Drosophila malerkotliana. Sharma S; Thakurdas P; Sinam B; Joshi D Chronobiol Int; 2012 Mar; 29(2):157-65. PubMed ID: 22324554 [TBL] [Abstract][Full Text] [Related]
11. Influence of the photocycle and thermocycle on rhythms of plasma thyroxine and plasma and ocular melatonin in late metamorphic stages of the bullfrog tadpole, Rana catesbeiana. Wright ML; Bruni NK Comp Biochem Physiol A Mol Integr Physiol; 2004 Sep; 139(1):33-40. PubMed ID: 15471678 [TBL] [Abstract][Full Text] [Related]
12. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata). Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119 [TBL] [Abstract][Full Text] [Related]
13. Circadian rhythms of embryonic development and hatching in fish: a comparative study of zebrafish (diurnal), Senegalese sole (nocturnal), and Somalian cavefish (blind). Villamizar N; Blanco-Vives B; Oliveira C; Dinis MT; Di Rosa V; Negrini P; Bertolucci C; Sánchez-Vázquez FJ Chronobiol Int; 2013 Aug; 30(7):889-900. PubMed ID: 23697903 [TBL] [Abstract][Full Text] [Related]
14. Circadian rhythms of self-feeding and locomotor activity in zebrafish (Danio Rerio). del Pozo A; Sánchez-Férez JA; Sánchez-Vázquez FJ Chronobiol Int; 2011 Feb; 28(1):39-47. PubMed ID: 21182403 [TBL] [Abstract][Full Text] [Related]
15. Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (family: Bathyergidae). Oosthuizen MK; Cooper HM; Bennett NC J Biol Rhythms; 2003 Dec; 18(6):481-90. PubMed ID: 14667149 [TBL] [Abstract][Full Text] [Related]
16. Synchronization of Indian weaver bird circadian rhythms to food and light zeitgebers: role of pineal. Rani S; Singh S; Malik S; Singh J; Kumar V Chronobiol Int; 2009 May; 26(4):653-65. PubMed ID: 19444747 [TBL] [Abstract][Full Text] [Related]
17. Period and phase control in a multioscillatory circadian system (Iguana iguana). Bartell PA; Miranda-Anaya M; Menaker M J Biol Rhythms; 2004 Feb; 19(1):47-57. PubMed ID: 14964703 [TBL] [Abstract][Full Text] [Related]
18. Dissociation of the circadian system of Octodon degus by T28 and T21 light-dark cycles. Vivanco P; Otalora BB; Rol MA; Madrid JA Chronobiol Int; 2010 Sep; 27(8):1580-95. PubMed ID: 20854136 [TBL] [Abstract][Full Text] [Related]
19. Demand-feeding rhythms and feeding-entrainment of locomotor activity rhythms in tench (Tinca tinca). Herrero MJ; Pascual M; Madrid JA; Sánchez-Vázquez FJ Physiol Behav; 2005 Mar; 84(4):595-605. PubMed ID: 15811395 [TBL] [Abstract][Full Text] [Related]
20. Entrainment of circadian rhythm by ambient temperature cycles in mice. Refinetti R J Biol Rhythms; 2010 Aug; 25(4):247-56. PubMed ID: 20679494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]