BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19212891)

  • 1. rhEGF microsphere formulation and in vitro skin evaluation.
    Al Haushey L; Bolzinger MA; Fessi H; Briançon S
    J Microencapsul; 2010; 27(1):14-24. PubMed ID: 19212891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release optimization of epidermal growth factor from PLGA microparticles.
    Mirdailami O; Khoshayand MR; Soleimani M; Dinarvand R; Atyabi F
    Pharm Dev Technol; 2014 Aug; 19(5):539-47. PubMed ID: 23777385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and in vitro evaluation of lipid nanoparticle-based dressings for topical treatment of chronic wounds.
    Gainza G; Chu WS; Guy RH; Pedraz JL; Hernandez RM; Delgado-Charro B; Igartua M
    Int J Pharm; 2015 Jul; 490(1-2):404-11. PubMed ID: 26043822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dextrin-rhEGF conjugates as bioresponsive nanomedicines for wound repair.
    Hardwicke J; Ferguson EL; Moseley R; Stephens P; Thomas DW; Duncan R
    J Control Release; 2008 Sep; 130(3):275-83. PubMed ID: 18700156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats.
    Chu Y; Yu D; Wang P; Xu J; Li D; Ding M
    Wound Repair Regen; 2010; 18(5):499-505. PubMed ID: 20840519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and evaluation of poly(L-lactic acid) microspheres containing rhEGF for chronic gastric ulcer healing.
    Han K; Lee KD; Gao ZG; Park JS
    J Control Release; 2001 Aug; 75(3):259-69. PubMed ID: 11489314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair effect of diabetic ulcers with recombinant human epidermal growth factor loaded by sustained-release microspheres.
    Dong X; Xu J; Wang W; Luo H; Liang X; Zhang L; Wang H; Wang P; Chang J
    Sci China C Life Sci; 2008 Nov; 51(11):1039-44. PubMed ID: 18989647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. rhEGF-loaded PLGA-Alginate microspheres enhance the healing of full-thickness excisional wounds in diabetised Wistar rats.
    Gainza G; Aguirre JJ; Pedraz JL; Hernández RM; Igartua M
    Eur J Pharm Sci; 2013 Nov; 50(3-4):243-52. PubMed ID: 23872142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pegylated recombinant human epidermal growth factor (rhEGF) for sustained release from biodegradable PLGA microspheres.
    Kim TH; Lee H; Park TG
    Biomaterials; 2002 Jun; 23(11):2311-7. PubMed ID: 12013178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly (epsilon-caprolactone) microparticles containing Levobunolol HCl prepared by a multiple emulsion (W/O/W) solvent evaporation technique: effects of some formulation parameters on microparticle characteristics.
    Karataş A; Sonakin O; Kiliçarslan M; Baykara T
    J Microencapsul; 2009 Feb; 26(1):63-74. PubMed ID: 18608798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor cone-jet mode.
    Xie J; Wang CH
    Biotechnol Bioeng; 2007 Aug; 97(5):1278-90. PubMed ID: 17216662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the particle size and in vitro release of bovine serum albumin from polyethylene glycol microparticles.
    Thummala AS; Leach JK; O'Rear EA
    Biomed Sci Instrum; 2003; 39():318-23. PubMed ID: 12724913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The preparation and the in vitro release of OANO-1 microspheres].
    Yang F; Bi GW; Long XY; Yu ZM; Yang WS; Feng LP
    Zhongguo Zhong Yao Za Zhi; 2005 Jul; 30(13):992-4. PubMed ID: 16161426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained release of bioactive glycosylated glial cell-line derived neurotrophic factor from biodegradable polymeric microspheres.
    Garbayo E; Ansorena E; Lanciego JL; Aymerich MS; Blanco-Prieto MJ
    Eur J Pharm Biopharm; 2008 Aug; 69(3):844-51. PubMed ID: 18417331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk coating on poly(ε-caprolactone) microspheres for the delayed release of vancomycin.
    Zhou J; Fang T; Wen J; Shao Z; Dong J
    J Microencapsul; 2011; 28(2):99-107. PubMed ID: 21265711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen-coated polycaprolactone microparticles as a controlled drug delivery system.
    Aishwarya S; Mahalakshmi S; Sehgal PK
    J Microencapsul; 2008 Aug; 25(5):298-306. PubMed ID: 18465301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Construction on the chitosan microparticles of baicalin and comparison of transdermal diffusion in vitro of baicalin in chitosan microparticles and cream].
    Wang H; Cai Y; Han H; Wang BD; Huang YJ; Yu RM
    Zhong Yao Cai; 2012 May; 35(5):800-3. PubMed ID: 23213745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant human epidermal growth factor accelerates recovery of mouse small intestinal mucosa after radiation damage.
    Lee KK; Jo HJ; Hong JP; Lee SW; Sohn JS; Moon SY; Yang SH; Shim H; Lee SH; Ryu SH; Moon SR
    Int J Radiat Oncol Biol Phys; 2008 Jul; 71(4):1230-5. PubMed ID: 18572086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The microencapsulation of protein using a novel ternary blend based on poly(epsilon-caprolactone).
    Huatan H; Collett JH; Attwood D
    J Microencapsul; 1995; 12(5):557-67. PubMed ID: 8544099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Textiles with gallic acid microspheres: in vitro release characteristics.
    Martí M; Martínez V; Carreras N; Alonso C; Lis MJ; Parra JL; Coderch L
    J Microencapsul; 2014; 31(6):535-41. PubMed ID: 24697181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.