These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19213135)

  • 1. Dense graphlet statistics of protein interaction and random networks.
    Colak R; Hormozdiari F; Moser F; Schönhuth A; Holman J; Ester M; Sahinalp SC
    Pac Symp Biocomput; 2009; ():178-89. PubMed ID: 19213135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning the structure of protein-protein interaction networks.
    Kuchaiev O; Przulj N
    Pac Symp Biocomput; 2009; ():39-50. PubMed ID: 19209694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient estimation of graphlet frequency distributions in protein-protein interaction networks.
    Przulj N; Corneil DG; Jurisica I
    Bioinformatics; 2006 Apr; 22(8):974-80. PubMed ID: 16452112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse engineering the evolution of protein interaction networks.
    Gibson TA; Goldberg DS
    Pac Symp Biocomput; 2009; ():190-202. PubMed ID: 19213136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric evolutionary dynamics of protein interaction networks.
    Przulj N; Kuchaiev O; Stevanović A; Hayes W
    Pac Symp Biocomput; 2010; ():178-89. PubMed ID: 19908370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of functional modules in a PPI network by bounded diameter clustering.
    Sohaee N; Forst CV
    J Bioinform Comput Biol; 2010 Dec; 8(6):929-43. PubMed ID: 21121019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying dynamic network modules with temporal and spatial constraints.
    Jin R; McCallen S; Liu CC; Xiang Y; Almaas E; Zhou XJ
    Pac Symp Biocomput; 2009; ():203-14. PubMed ID: 19209702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrative approach to modeling biological networks.
    Memisevic V; Milenkovic T; Przulj N
    J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A degree-distribution based hierarchical agglomerative clustering algorithm for protein complexes identification.
    Yu L; Gao L; Li K; Zhao Y; Chiu DK
    Comput Biol Chem; 2011 Oct; 35(5):298-307. PubMed ID: 22000801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological network comparison using graphlet degree distribution.
    Przulj N
    Bioinformatics; 2007 Jan; 23(2):e177-83. PubMed ID: 17237089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of tissue/disease specific integrated networks using directed graphlet signatures.
    Sonmez AB; Can T
    BMC Bioinformatics; 2017 Mar; 18(Suppl 4):135. PubMed ID: 28361704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling interactome: scale-free or geometric?
    Przulj N; Corneil DG; Jurisica I
    Bioinformatics; 2004 Dec; 20(18):3508-15. PubMed ID: 15284103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How threshold behaviour affects the use of subgraphs for network comparison.
    Rito T; Wang Z; Deane CM; Reinert G
    Bioinformatics; 2010 Sep; 26(18):i611-7. PubMed ID: 20823329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and robust prediction algorithms for protein complexes using Gomory-Hu trees.
    Mitrofanova A; Farach-Colton M; Mishra B
    Pac Symp Biocomput; 2009; ():215-26. PubMed ID: 19209703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Complexes in Biological Networks Through Diversified Dense Subgraph Mining.
    Ma X; Zhou G; Shang J; Wang J; Peng J; Han J
    J Comput Biol; 2017 Sep; 24(9):923-941. PubMed ID: 28570104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphlet-based measures are suitable for biological network comparison.
    Hayes W; Sun K; Pržulj N
    Bioinformatics; 2013 Feb; 29(4):483-91. PubMed ID: 23349212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the additions of clustered interacting nodes during the evolution of protein interaction networks from network motifs.
    Liu Z; Liu Q; Sun H; Hou L; Guo H; Zhu Y; Li D; He F
    BMC Evol Biol; 2011 May; 11():133. PubMed ID: 21595981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. k-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks.
    Liu Q; Chen YP; Li J
    J Theor Biol; 2014 Jan; 340():146-54. PubMed ID: 24056214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolutionary rate of a protein is influenced by features of the interacting partners.
    Makino T; Gojobori T
    Mol Biol Evol; 2006 Apr; 23(4):784-9. PubMed ID: 16407461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.