These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19213309)

  • 1. From ultra-high vacuum to the electrochemical interface: x-ray scattering studies of model electrocatalysts.
    Lucas CA; Cormack M; Gallagher ME; Brownrigg A; Thompson P; Fowler B; Gründer Y; Roy J; Stamenković V; Marković NM
    Faraday Discuss; 2008; 140():41-58; discussion 93-112. PubMed ID: 19213309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS).
    Yu C; Koh S; Leisch JE; Toney MF; Strasser P
    Faraday Discuss; 2008; 140():283-96; discussion 297-317. PubMed ID: 19213323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes.
    Lai SC; Koper MT
    Faraday Discuss; 2008; 140():399-416; discussion 417-37. PubMed ID: 19213329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface dynamics at well-defined single crystal microfacetted Pt(111) electrodes: in situ optical studies.
    Fromondi I; Scherson D
    Faraday Discuss; 2008; 140():59-68; discussion 93-112. PubMed ID: 19213310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes.
    Colmati F; Tremiliosi-Filho G; Gonzalez ER; Berná A; Herrero E; Feliu JM
    Faraday Discuss; 2008; 140():379-97; discussion 417-37. PubMed ID: 19213328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural, compositional and electrochemical characterization of Pt-Co oxygen-reduction catalysts.
    Axnanda S; Cummins KD; He T; Goodman DW; Soriaga MP
    Chemphyschem; 2010 May; 11(7):1468-75. PubMed ID: 20394098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular structure at electrode/electrolyte solution interfaces related to electrocatalysis.
    Noguchi H; Okada T; Uosaki K
    Faraday Discuss; 2008; 140():125-37; discussion 185-207. PubMed ID: 19213314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic studies of adsorbed CO electrochemical oxidation on Pt(335) at full and sub-saturation coverages.
    Inkaew P; Korzeniewski C
    Phys Chem Chem Phys; 2008 Jul; 10(25):3655-61. PubMed ID: 18563226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.
    Strasser P; Koh S; Greeley J
    Phys Chem Chem Phys; 2008 Jul; 10(25):3670-83. PubMed ID: 18563228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bridging Electrochemistry and Ultrahigh Vacuum: "Unburying" the Electrode-Electrolyte Interface.
    Wong RA; Yokota Y; Kim Y
    Acc Chem Res; 2023 Jul; 56(14):2015-2025. PubMed ID: 37384820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoscopic mass transport effects in electrocatalytic processes.
    Seidel YE; Schneider A; Jusys Z; Wickman B; Kasemo B; Behm RJ
    Faraday Discuss; 2008; 140():167-84; discussion 185-207. PubMed ID: 19213317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bridging the gap between nanoparticles and single crystal surfaces.
    Kaghazchi P; Simeone FC; Soliman KA; Kibler LA; Jacob T
    Faraday Discuss; 2008; 140():69-80; discussion 93-112. PubMed ID: 19213311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes.
    Schneider A; Colmenares L; Seidel YE; Jusys Z; Wickman B; Kasemo B; Behm RJ
    Phys Chem Chem Phys; 2008 Apr; 10(14):1931-43. PubMed ID: 18368186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative in situ 195Pt electrochemical-NMR investigation of PtRu nanoparticles supported on diverse carbon nanomaterials.
    Tan F; Du B; Danberry AL; Park IS; Sung YE; Tong Y
    Faraday Discuss; 2008; 140():139-53; discussion 185-207. PubMed ID: 19213315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of water on elementary reaction steps in electrocatalysis.
    Gohda Y; Schnur S; Gross A
    Faraday Discuss; 2008; 140():233-44; discussion 297-317. PubMed ID: 19213320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the Dynamic Nature of Fuel Cell Electrodes as a Function of Conditioning: An ex Situ Material Characterization and in Situ Electrochemical Diagnostic Study.
    Kabir S; Myers DJ; Kariuki N; Park J; Wang G; Baker A; Macauley N; Mukundan R; More KL; Neyerlin KC
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45016-45030. PubMed ID: 31692317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media.
    Imai H; Izumi K; Matsumoto M; Kubo Y; Kato K; Imai Y
    J Am Chem Soc; 2009 May; 131(17):6293-300. PubMed ID: 19358577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys.
    Siwek H; Lukaszewski M; Czerwiński A
    Phys Chem Chem Phys; 2008 Jul; 10(25):3752-65. PubMed ID: 18563236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [In situ FTIR spectroscopy studies of HCOOH oxidation on surface alloy electrocatalysts].
    Chen SP; Huang T; Zhen CH; Zhang Q; Gong H; Sun SG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Apr; 23(2):273-5. PubMed ID: 12961868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.