These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 19213625)

  • 1. On the inaccuracy of using Mindlin's first-order plate theory for calculating the motional capacitance of a thickness-shear resonator.
    Hu H; Hu Y; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):7-8. PubMed ID: 19213625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy trapping in high-frequency vibrations of piezoelectric plates with partial mass layers under lateral electric field excitation.
    Liu B; Jiang Q; Xie H; Yang J
    Ultrasonics; 2011 Apr; 51(3):376-81. PubMed ID: 21145572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical analysis of a ceramic plate thickness-shear mode piezoelectric transformer.
    Xu L; Zhang Y; Fan H; Hu J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):613-21. PubMed ID: 19411219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes.
    Ma T; Wang J; Du J; Yang J
    Ultrasonics; 2015 May; 59():14-20. PubMed ID: 25660411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency spectra of AT-cut quartz plates with electrodes of unequal thickness.
    Wang J; Hu Y; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1146-51. PubMed ID: 20442025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of air resistance on AT-cut quartz thickness-shear resonators.
    Chen Y; Wang J; Du J; Zhang W; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):402-7. PubMed ID: 23357914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculations of Lamb wave band gaps and dispersions for piezoelectric phononic plates using mindlin's theory-based plane wave expansion method.
    Hsu JC; Wu TT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):431-41. PubMed ID: 18334349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling Vibration Analysis of Trapped-Energy Rectangular Quartz Resonators by Variational Formulation of Mindlin's Theory.
    Li N; Wang B; Qian Z
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29587469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates.
    Yong YK; Wang J; Imai T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):1-13. PubMed ID: 18238393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Governing equations for a piezoelectric plate with graded properties across the thickness.
    Lee PY; Yu JD
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):236-50. PubMed ID: 18244175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Five-mode frequency spectra of x3-dependent modes in AT-cut quartz resonators.
    Chen G; Wu R; Wang J; Du J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):811-6. PubMed ID: 22547292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency spectra of beam-plates revisited.
    Guo YQ; Chen WQ; Pao YH
    Ultrasonics; 2009 Jan; 49(1):4-9. PubMed ID: 18606431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass-frequency influence surface, mode shapes, and frequency spectrum of a rectangular AT-cut quartz plate.
    Yong YK; Stewart JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):67-73. PubMed ID: 18267559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency interferences of two-unit quartz resonator arrays excited by lateral electric fields.
    Ma T; Zhang Q; Yan L; Xie C; Wang J; Du J; Huang J; Huang B; Zhang C
    J Acoust Soc Am; 2018 Nov; 144(5):2971. PubMed ID: 30522298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on the displacement function and equivalent circuit of circular flexural vibration mode piezoelectric ceramic composite transducers.
    Yihua H; Wenjin H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):218-34. PubMed ID: 23287927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A few transient effects in AT-cut quartz thickness-shear resonators.
    Zhang R; Hu H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2758-62. PubMed ID: 23443713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and Electrode Design Optimizations of Plano-Plano Langasite Crystal Resonator.
    Shah MI; Kariyawasam K; Ramakrishnan N; Saha T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1521-1528. PubMed ID: 31180848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency vibration of beveled crystal plates by using subregional geometric fitting method.
    Sun Z; Wang Z; Li Z; Guo Y; Huang B
    Sci Rep; 2024 Jul; 14(1):17131. PubMed ID: 39054382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration sensitivity of crystal resonators affected by the mass and location of electrodes.
    Lee PY; Guo X
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(4):358-65. PubMed ID: 18267596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Plate Theory for the Analysis of Coupling Vibrations in Shear Mode FBARs.
    Li N; Wang B; Qian Z; Kuznetsova I; Ma T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1897-1908. PubMed ID: 32365025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.