BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19213631)

  • 1. Subtraction elastography for the evaluation of ablation-induced lesions: a feasibility study.
    Shao J; Wang J; Zhang Y; Cui L; Liu K; Bai J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):44-54. PubMed ID: 19213631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise reduction for ultrasonic elastography using transmit-side frequency compounding: a preliminary study.
    Cui S; Liu DC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):509-16. PubMed ID: 21429843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2D strain estimator with numerical optimization method for soft-tissue elastography.
    Liu K; Zhang P; Shao J; Zhu X; Zhang Y; Bai J
    Ultrasonics; 2009 Dec; 49(8):723-32. PubMed ID: 19560794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrections to the displacement estimation based on analytic minimization of adaptive regularized cost functions for ultrasound elastography.
    Peng B; Lai J; Wang L; Liu DC
    Biomed Mater Eng; 2014; 24(6):2801-10. PubMed ID: 25226985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastographic measurement of the area and volume of thermal lesions resulting from radiofrequency ablation: pathologic correlation.
    Varghese T; Techavipoo U; Liu W; Zagzebski JA; Chen Q; Frank G; Lee FT
    AJR Am J Roentgenol; 2003 Sep; 181(3):701-7. PubMed ID: 12933463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real time shear waves elastography monitoring of thermal ablation: in vivo evaluation in pig livers.
    Mariani A; Kwiecinski W; Pernot M; Balvay D; Tanter M; Clement O; Cuenod CA; Zinzindohoue F
    J Surg Res; 2014 May; 188(1):37-43. PubMed ID: 24485877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast tissue stiffness-dependent elastography for HIFU-induced lesions inspection.
    Zhang D; Zhang S; Wan M; Wang S
    Ultrasonics; 2011 Dec; 51(8):857-69. PubMed ID: 21683972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel spline-based approach for robust strain estimation in elastography.
    Alam SK
    Ultrason Imaging; 2010 Apr; 32(2):91-102. PubMed ID: 20687277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast bilateral filter with application to artefact reduction.
    Shao D; Zhong M; Liu DC
    Comput Methods Biomech Biomed Engin; 2015; 18(4):376-81. PubMed ID: 23808951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography.
    Latorre-Ossa H; Gennisson JL; De Brosses E; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):833-9. PubMed ID: 22547295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freehand real-time elastography: impact of scanning parameters on image quality and in vitro intra- and interobserver validations.
    Havre RF; Elde E; Gilja OH; Odegaard S; Eide GE; Matre K; Nesje LB
    Ultrasound Med Biol; 2008 Oct; 34(10):1638-50. PubMed ID: 18524458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Displacement Tracking Algorithms for in Vivo Electrode Displacement Elastography.
    Pohlman RM; Varghese T; Jiang J; Ziemlewicz TJ; Alexander ML; Wergin KL; Hinshaw JL; Lubner MG; Wells SA; Lee FT
    Ultrasound Med Biol; 2019 Jan; 45(1):218-232. PubMed ID: 30318122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiofrequency electrode vibration-induced shear wave imaging for tissue modulus estimation: a simulation study.
    Bharat S; Varghese T
    J Acoust Soc Am; 2010 Oct; 128(4):1582-5. PubMed ID: 20968329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards quantitative quasi-static ultrasound elastography using a reference layer for liver imaging application: A preliminary assessment.
    Selladurai S; Thittai AK
    Ultrasonics; 2019 Mar; 93():7-17. PubMed ID: 30384008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elasticity reconstruction for ultrasound elastography using a radial compression: an inverse approach.
    Luo J; Ying K; Bai J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e195-8. PubMed ID: 16854445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain estimation in elastography using scale-invariant keypoints tracking.
    Xiao Y; Shen Y; Niu L; Ling T; Wang C; Zheng H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):706-17. PubMed ID: 23549531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography.
    Thitaikumar A; Krouskop TA; Ophir J
    Phys Med Biol; 2007 Jan; 52(1):13-28. PubMed ID: 17183125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient elastography using impulsive ultrasound radiation force: a preliminary comparison with surface palpation elastography.
    Melodelima D; Bamber JC; Duck FA; Shipley JA
    Ultrasound Med Biol; 2007 Jun; 33(6):959-69. PubMed ID: 17445967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving thermal ablation delineation with electrode vibration elastography using a bidirectional wave propagation assumption.
    DeWall RJ; Varghese T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):168-73. PubMed ID: 22293748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of robust wave image processing methods for magnetic resonance elastography.
    Li BN; Shan X; Xiang K; An N; Xu J; Huang W; Kobayashi E
    Comput Biol Med; 2014 Nov; 54():100-8. PubMed ID: 25222934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.