These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19213649)

  • 21. Overtone frequency spectra for x3-dependent modes in AT-cut quartz resonators.
    Zhu J; Chen W; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):858-63. PubMed ID: 23549548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of a monolithic, two-dimensional array of quartz crystal microbalances loaded by mass layers with nonuniform thickness.
    Liu N; Yang J; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):746-51. PubMed ID: 22547285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thickness-shear vibration of an AT-cut quartz resonator with a hyperbolic contour.
    Li P; Jin F; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):1006-12. PubMed ID: 22622986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The properties of thickness-twist (TT) wave modes in a rotated Y-cut quartz plate with a functionally graded material top layer.
    Wang B; Qian Z; Li N; Sarraf H
    Ultrasonics; 2016 Jan; 64():62-8. PubMed ID: 26254981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dual-mode thickness-shear quartz pressure sensor.
    Besson RJ; Boy JJ; Glotin B; Jinzaki Y; Sinha B; Valdois M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):584-91. PubMed ID: 18263223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes.
    Ma T; Wang J; Du J; Yang J
    Ultrasonics; 2015 May; 59():14-20. PubMed ID: 25660411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of electromagnetic radiation on the Q of quartz resonators.
    Yong YK; Patel M; Vig J; Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):353-60. PubMed ID: 19251522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental study of thickness-shear vibration of AT-cut quartz resonators loaded with microparticles.
    Zhang H; Lee P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1521-4. PubMed ID: 21768035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viscosity sensor utilizing a piezoelectric thickness shear sandwich resonator.
    Thalhammer R; Braun S; Devcic-Kuhar B; Groschl M; Trampler F; Benes E; Nowotny H; Kostal P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1331-40. PubMed ID: 18244295
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shear-horizontal waves in a rotated Y-cut quartz plate in contact with a viscous fluid.
    Sun J; Du J; Yang J; Wang J
    Ultrasonics; 2012 Jan; 52(1):133-7. PubMed ID: 21906772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of mass layer stiffness on propagation of thickness-twist waves in rotated Y-cut quartz crystal plates.
    Yang Z; Hu Y; Yang J
    Ultrasonics; 2009 May; 49(4-5):401-3. PubMed ID: 19081122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical algorithms and results for SC-cut quartz plates vibrating at the third harmonic overtone of thickness shear.
    Yong YK; Zhang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):685-93. PubMed ID: 18263256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thickness-shear vibration of an AT-cut quartz plate with elliptical electrodes and implications in optimal blank geometry.
    Xu L; Geng Y; Hu Y; Fan H; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):875-9. PubMed ID: 19406718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shear-horizontal waves in a rotated Y-cut quartz plate with an imperfectly bonded mass layer.
    Chen Y; Du J; Wang J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):616-22. PubMed ID: 21429853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane analogy of the Stevens-Tiersten equation for essentially thickness modes in plate quartz resonators.
    Zhang W; Yang Z; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1665-8. PubMed ID: 18986957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of air resistance on AT-cut quartz thickness-shear resonators.
    Chen Y; Wang J; Du J; Zhang W; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):402-7. PubMed ID: 23357914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thickness-shear modes of an elliptical, contoured AT-cut quartz resonator.
    Wang W; Wu R; Wang J; Du J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1192-8. PubMed ID: 25004481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free and forced vibrations of SC-cut quartz crystal rectangular plates with the first-order Mindlin plate equations.
    Wu R; Wang W; Chen G; Chen H; Ma T; Du J; Wang J
    Ultrasonics; 2017 Jan; 73():96-106. PubMed ID: 27623522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
    Wang J; Yang L; Pan Q; Chao MC; Du J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1102-7. PubMed ID: 21622066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity.
    Wang J; Zhao W; Du J; Hu Y
    Ultrasonics; 2011 Jan; 51(1):65-70. PubMed ID: 20594568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.