These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19213731)

  • 1. Crystal structure of biotin carboxylase in complex with substrates and implications for its catalytic mechanism.
    Chou CY; Yu LP; Tong L
    J Biol Chem; 2009 Apr; 284(17):11690-7. PubMed ID: 19213731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biochemical studies on the regulation of biotin carboxylase by substrate inhibition and dimerization.
    Chou CY; Tong L
    J Biol Chem; 2011 Jul; 286(27):24417-25. PubMed ID: 21592965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.
    Broussard TC; Pakhomova S; Neau DB; Bonnot R; Waldrop GL
    Biochemistry; 2015 Jun; 54(24):3860-70. PubMed ID: 26020841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic characterization of mutations found in propionic acidemia and methylcrotonylglycinuria: evidence for cooperativity in biotin carboxylase.
    Sloane V; Waldrop GL
    J Biol Chem; 2004 Apr; 279(16):15772-8. PubMed ID: 14960587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between the biotin carboxyl carrier domain and the biotin carboxylase domain in pyruvate carboxylase from Rhizobium etli.
    Lietzan AD; Menefee AL; Zeczycki TN; Kumar S; Attwood PV; Wallace JC; Cleland WW; St Maurice M
    Biochemistry; 2011 Nov; 50(45):9708-23. PubMed ID: 21958016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the importance of the biotin carboxylase domain dimer for Staphylococcus aureus pyruvate carboxylase catalysis.
    Yu LP; Chou CY; Choi PH; Tong L
    Biochemistry; 2013 Jan; 52(3):488-96. PubMed ID: 23286247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis of ATP binding residues of biotin carboxylase. Insight into the mechanism of catalysis.
    Sloane V; Blanchard CZ; Guillot F; Waldrop GL
    J Biol Chem; 2001 Jul; 276(27):24991-6. PubMed ID: 11346647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli.
    Zeczycki TN; Menefee AL; Adina-Zada A; Jitrapakdee S; Surinya KH; Wallace JC; Attwood PV; St Maurice M; Cleland WW
    Biochemistry; 2011 Nov; 50(45):9724-37. PubMed ID: 21957995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase.
    Mochalkin I; Miller JR; Evdokimov A; Lightle S; Yan C; Stover CK; Waldrop GL
    Protein Sci; 2008 Oct; 17(10):1706-18. PubMed ID: 18725455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity.
    Chapman-Smith A; Mulhern TD; Whelan F; Cronan JE; Wallace JC
    Protein Sci; 2001 Dec; 10(12):2608-17. PubMed ID: 11714929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biotin enzyme family: conserved structural motifs and domain rearrangements.
    Jitrapakdee S; Wallace JC
    Curr Protein Pept Sci; 2003 Jun; 4(3):217-29. PubMed ID: 12769720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do cysteine 230 and lysine 238 of biotin carboxylase play a role in the activation of biotin?
    Levert KL; Lloyd RB; Waldrop GL
    Biochemistry; 2000 Apr; 39(14):4122-8. PubMed ID: 10747803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movement of the biotin carboxylase B-domain as a result of ATP binding.
    Thoden JB; Blanchard CZ; Holden HM; Waldrop GL
    J Biol Chem; 2000 May; 275(21):16183-90. PubMed ID: 10821865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of biotin carboxylase by a reaction intermediate analog: implications for the kinetic mechanism.
    Blanchard CZ; Amspacher D; Strongin R; Waldrop GL
    Biochem Biophys Res Commun; 1999 Dec; 266(2):466-71. PubMed ID: 10600526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of urea carboxylase provides insights into the carboxyltransfer reaction.
    Fan C; Chou CY; Tong L; Xiang S
    J Biol Chem; 2012 Mar; 287(12):9389-98. PubMed ID: 22277658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the intermediacy of carboxyphosphate in biotin-dependent carboxylations.
    Ogita T; Knowles JR
    Biochemistry; 1988 Oct; 27(21):8028-33. PubMed ID: 2976600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The utility of molecular dynamics simulations for understanding site-directed mutagenesis of glycine residues in biotin carboxylase.
    Bordelon T; Nilsson Lill SO; Waldrop GL
    Proteins; 2009 Mar; 74(4):808-19. PubMed ID: 18704941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of biotin carboxylase: steady-state kinetic investigations.
    Tipton PA; Cleland WW
    Biochemistry; 1988 Jun; 27(12):4317-25. PubMed ID: 2971391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-13 and deuterium isotope effects on the catalytic reactions of biotin carboxylase.
    Tipton PA; Cleland WW
    Biochemistry; 1988 Jun; 27(12):4325-31. PubMed ID: 3048384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of two quaternary complexes of dethiobiotin synthetase, enzyme-MgADP-AlF3-diaminopelargonic acid and enzyme-MgADP-dethiobiotin-phosphate; implications for catalysis.
    Käck H; Sandmark J; Gibson KJ; Schneider G; Lindqvist Y
    Protein Sci; 1998 Dec; 7(12):2560-6. PubMed ID: 9865950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.