These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Intranasally administered serelaxin abrogates airway remodelling and attenuates airway hyperresponsiveness in allergic airways disease. Royce SG; Lim CX; Patel KP; Wang B; Samuel CS; Tang ML Clin Exp Allergy; 2014 Nov; 44(11):1399-408. PubMed ID: 25113628 [TBL] [Abstract][Full Text] [Related]
4. Endogenous relaxin regulates collagen deposition in an animal model of allergic airway disease. Mookerjee I; Solly NR; Royce SG; Tregear GW; Samuel CS; Tang ML Endocrinology; 2006 Feb; 147(2):754-61. PubMed ID: 16254028 [TBL] [Abstract][Full Text] [Related]
5. Comparison of airway remodeling in acute, subacute, and chronic models of allergic airways disease. Locke NR; Royce SG; Wainewright JS; Samuel CS; Tang ML Am J Respir Cell Mol Biol; 2007 May; 36(5):625-32. PubMed ID: 17237192 [TBL] [Abstract][Full Text] [Related]
6. Combination therapy with relaxin and methylprednisolone augments the effects of either treatment alone in inhibiting subepithelial fibrosis in an experimental model of allergic airways disease. Royce SG; Sedjahtera A; Samuel CS; Tang ML Clin Sci (Lond); 2013 Jan; 124(1):41-51. PubMed ID: 22817662 [TBL] [Abstract][Full Text] [Related]
7. Relaxin plays an important role in the regulation of airway structure and function. Samuel CS; Royce SG; Burton MD; Zhao C; Tregear GW; Tang ML Endocrinology; 2007 Sep; 148(9):4259-66. PubMed ID: 17584966 [TBL] [Abstract][Full Text] [Related]
8. Effects of the histone deacetylase inhibitor, trichostatin A, in a chronic allergic airways disease model in mice. Royce SG; Dang W; Yuan G; Tran J; El-Osta A; Karagiannis TC; Tang ML Arch Immunol Ther Exp (Warsz); 2012 Aug; 60(4):295-306. PubMed ID: 22684086 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of airway inflammation, hyperresponsiveness and remodeling by soy isoflavone in a murine model of allergic asthma. Bao ZS; Hong L; Guan Y; Dong XW; Zheng HS; Tan GL; Xie QM Int Immunopharmacol; 2011 Aug; 11(8):899-906. PubMed ID: 21354484 [TBL] [Abstract][Full Text] [Related]
10. Relaxin family peptide receptor-1 protects against airway fibrosis during homeostasis but not against fibrosis associated with chronic allergic airways disease. Samuel CS; Royce SG; Chen B; Cao H; Gossen JA; Tregear GW; Tang ML Endocrinology; 2009 Mar; 150(3):1495-502. PubMed ID: 18974264 [TBL] [Abstract][Full Text] [Related]
11. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease. Royce SG; Shen M; Patel KP; Huuskes BM; Ricardo SD; Samuel CS Stem Cell Res; 2015 Nov; 15(3):495-505. PubMed ID: 26426509 [TBL] [Abstract][Full Text] [Related]
12. Role of relaxin in regulation of fibrosis in the lung. Tang ML; Samuel CS; Royce SG Ann N Y Acad Sci; 2009 Apr; 1160():342-7. PubMed ID: 19416216 [TBL] [Abstract][Full Text] [Related]
13. A novel prostacyclin agonist protects against airway hyperresponsiveness and remodeling in mice. Yamabayashi C; Koya T; Kagamu H; Kawakami H; Kimura Y; Furukawa T; Sakagami T; Hasegawa T; Sakai Y; Matsumoto K; Nakayama M; Gelfand EW; Suzuki E; Narita I Am J Respir Cell Mol Biol; 2012 Aug; 47(2):170-7. PubMed ID: 22403804 [TBL] [Abstract][Full Text] [Related]
14. Prevention of bleomycin-induced pulmonary fibrosis by a novel antifibrotic peptide with relaxin-like activity. Pini A; Shemesh R; Samuel CS; Bathgate RA; Zauberman A; Hermesh C; Wool A; Bani D; Rotman G J Pharmacol Exp Ther; 2010 Dec; 335(3):589-99. PubMed ID: 20826567 [TBL] [Abstract][Full Text] [Related]
15. [Effects of H2 relaxin on airway remodeling and expression of cyclin D1 in a murine model of chronic asthma]. Han SG; Lü BL; Ding XJ; Zhang J; Huang M Zhonghua Jie He He Hu Xi Za Zhi; 2012 May; 35(5):349-54. PubMed ID: 22883994 [TBL] [Abstract][Full Text] [Related]
16. Sites of allergic airway smooth muscle remodeling and hyperresponsiveness are not associated in the rat. Siddiqui S; Jo T; Tamaoka M; Shalaby KH; Ghezzo H; Bernabeu M; Martin JG J Appl Physiol (1985); 2010 Oct; 109(4):1170-8. PubMed ID: 20651225 [TBL] [Abstract][Full Text] [Related]
17. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease. Royce SG; Dang W; Ververis K; De Sampayo N; El-Osta A; Tang ML; Karagiannis TC Epigenetics; 2011 Dec; 6(12):1463-70. PubMed ID: 22139576 [TBL] [Abstract][Full Text] [Related]
18. Effect of fudosteine, a cysteine derivative, on airway hyperresponsiveness, inflammation, and remodeling in a murine model of asthma. Ueno-Iio T; Shibakura M; Iio K; Tanimoto Y; Kanehiro A; Tanimoto M; Kataoka M Life Sci; 2013 May; 92(20-21):1015-23. PubMed ID: 23583570 [TBL] [Abstract][Full Text] [Related]
19. Investigating the role of relaxin in the regulation of airway fibrosis in animal models of acute and chronic allergic airway disease. Mookerjee I; Tang ML; Solly N; Tregear GW; Samuel CS Ann N Y Acad Sci; 2005 May; 1041():194-6. PubMed ID: 15956707 [TBL] [Abstract][Full Text] [Related]
20. Intranasal administration of mesenchymoangioblast-derived mesenchymal stem cells abrogates airway fibrosis and airway hyperresponsiveness associated with chronic allergic airways disease. Royce SG; Rele S; Broughton BRS; Kelly K; Samuel CS FASEB J; 2017 Sep; 31(9):4168-4178. PubMed ID: 28626025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]