These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1131 related articles for article (PubMed ID: 19213997)

  • 1. Modelling hydrological effects of wetland restoration: a differentiated view.
    Staes J; Rubarenzya MH; Meire P; Willems P
    Water Sci Technol; 2009; 59(3):433-41. PubMed ID: 19213997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A micro case study of the legal and administrative arrangements for river health in the Kangaroo River (NSW).
    Mooney C; Farrier D
    Water Sci Technol; 2002; 45(11):161-8. PubMed ID: 12171348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogeological study for improved nature restoration in dune ecosystems--Kleyne Vlakte case study, Belgium.
    Vandenbohede A; Lebbe L; Adams R; Cosyns E; Durinck P; Zwaenepoel A
    J Environ Manage; 2010 Nov; 91(11):2385-95. PubMed ID: 20655140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetland types and wetland maps differ in ability to predict dissolved organic carbon concentrations in streams.
    Johnston CA; Shmagin BA; Frost PC; Cherrier C; Larson JH; Lamberti GA; Bridgham SD
    Sci Total Environ; 2008 Oct; 404(2-3):326-34. PubMed ID: 18054999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of isotopes to study floodplain wetland and river flow interaction in the White Volta River basin, Ghana.
    Nyarko BK; Kofi Essumang D; Eghan MJ; Reichert B; van de Giesen N; Vlek P
    Isotopes Environ Health Stud; 2010 Mar; 46(1):91-106. PubMed ID: 20229387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water security, global change and land-atmosphere feedbacks.
    Dadson S; Acreman M; Harding R
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2002):20120412. PubMed ID: 24080621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating objectives and scales for planning and implementing wetland restoration and creation in agricultural landscapes.
    Moreno-Mateos D; Comin FA
    J Environ Manage; 2010 Nov; 91(11):2087-95. PubMed ID: 20580153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between landscape pattern, wetland characteristics, and water quality in agricultural catchments.
    Moreno-Mateos D; Mander U; Comín FA; Pedrocchi C; Uuemaa E
    J Environ Qual; 2008; 37(6):2170-80. PubMed ID: 18948470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration.
    Hayakawa A; Shimizu M; Woli KP; Kuramochi K; Hatano R
    J Environ Qual; 2006; 35(2):617-27. PubMed ID: 16510707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.
    Wang X; Shang S; Qu Z; Liu T; Melesse AM; Yang W
    J Environ Manage; 2010 Jul; 91(7):1511-25. PubMed ID: 20236754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the success of hydrological restoration in two conservation easements within Central Florida ranchland.
    Sonnier G; Bohlen PJ; Swain HM; Orzell SL; Bridges EL; Boughton EH
    PLoS One; 2018; 13(7):e0199333. PubMed ID: 29969464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.
    Lee S; Yeo IY; Lang MW; Sadeghi AM; McCarty GW; Moglen GE; Evenson GR
    J Environ Manage; 2018 Oct; 223():37-48. PubMed ID: 29886149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dryland salinity in Western Australia: managing a changing water cycle.
    Taylor RJ; Hoxley G
    Water Sci Technol; 2003; 47(7-8):201-7. PubMed ID: 12793681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Problems in naming and defining the swampy meadow--an Australian perspective.
    Mactaggart B; Bauer J; Goldney D; Rawson A
    J Environ Manage; 2008 May; 87(3):461-73. PubMed ID: 17395361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riparian wetland rehabilitation and beaver re-colonization impacts on hydrological processes and water quality in a lowland agricultural catchment.
    Smith A; Tetzlaff D; Gelbrecht J; Kleine L; Soulsby C
    Sci Total Environ; 2020 Jan; 699():134302. PubMed ID: 31522046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Groundwater risk assessment at a heavily industrialised catchment and the associated impacts on a peri-urban wetland.
    Dimitriou E; Karaouzas I; Sarantakos K; Zacharias I; Bogdanos K; Diapoulis A
    J Environ Manage; 2008 Aug; 88(3):526-38. PubMed ID: 17499908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geomorphological methods to characterise wetlands at the scale of the Seine watershed.
    Curie F; Gaillard S; Ducharne A; Bendjoudi H
    Sci Total Environ; 2007 Apr; 375(1-3):59-68. PubMed ID: 17258794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of climate and land use changes on groundwater resources in coastal aquifers.
    Priyantha Ranjan S; Kazama S; Sawamoto M
    J Environ Manage; 2006 Jul; 80(1):25-35. PubMed ID: 16305816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying science to conservation and restoration of the world's wetlands.
    Mitsch WJ
    Water Sci Technol; 2005; 51(8):13-26. PubMed ID: 16007923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.