These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 19214008)
1. Modeling water and nutrients fluxes in the Büyük Menderes drainage basin, Turkey. Durdu OF; Cvetkovic V Water Sci Technol; 2009; 59(3):531-41. PubMed ID: 19214008 [TBL] [Abstract][Full Text] [Related]
2. Modelling nutrient fluxes from diffuse and point emissions to river loads: the Estonian part of the transboundary Lake Peipsi/Chudskoe drainage basin (Russia/Estonia/Latvia). Mourad D; van der Perk M Water Sci Technol; 2004; 49(3):21-8. PubMed ID: 15053095 [TBL] [Abstract][Full Text] [Related]
3. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104 [TBL] [Abstract][Full Text] [Related]
4. Nutrient emissions from diffuse and point sources into the River Danube and its main tributaries for the period of 1998-2000--results and problems. Schreiber H; Behrendt H; Constantinescu LT; Cvitanic I; Drumea D; Jabucar D; Juran S; Pataki B; Snishko S; Zessner M Water Sci Technol; 2005; 51(3-4):283-90. PubMed ID: 15850201 [TBL] [Abstract][Full Text] [Related]
5. Statistical modelling of riverine nutrient sources and retention in the Lake Peipsi drainage basin. Vassiljev A; Stålnacke P Water Sci Technol; 2005; 51(3-4):309-17. PubMed ID: 15850204 [TBL] [Abstract][Full Text] [Related]
6. Modelling nutrient emissions and the impact of nutrient reduction measures in the Weser river basin, Germany. Hirt U; Venohr M; Kreins P; Behrendt H Water Sci Technol; 2008; 58(11):2251-8. PubMed ID: 19092203 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of total nitrogen pollution reduction strategies in a river basin: a case study. Drolc A; Kondan JZ; Cotman M Water Sci Technol; 2001; 44(6):55-62. PubMed ID: 11700664 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen in river basins: sources, retention in the surface waters and peatlands, and fluxes to estuaries in Finland. Lepistö A; Granlund K; Kortelainen P; Räike A Sci Total Environ; 2006 Jul; 365(1-3):238-59. PubMed ID: 16624380 [TBL] [Abstract][Full Text] [Related]
9. Importance of diffuse pollution control in the Patzcuaro Lake Basin in Mexico. Carro MM; Dávila JI; Balandra AG; López RH; Delgadillo RH; Chávez JS; Inclán LB Water Sci Technol; 2008; 58(11):2179-86. PubMed ID: 19092194 [TBL] [Abstract][Full Text] [Related]
10. Propagation of uncertainty in diffuse pollution into water quality predictions: application to the River Dender in Flanders, Belgium. Vandenberghe V; van Griensven A; Bauwens W; Vanrolleghem PA Water Sci Technol; 2005; 51(3-4):347-54. PubMed ID: 15850208 [TBL] [Abstract][Full Text] [Related]
11. Assessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling framework. He B; Kanae S; Oki T; Hirabayashi Y; Yamashiki Y; Takara K Water Res; 2011 Apr; 45(8):2573-86. PubMed ID: 21402394 [TBL] [Abstract][Full Text] [Related]
12. Modeling the contribution of point sources and non-point sources to Thachin River water pollution. Schaffner M; Bader HP; Scheidegger R Sci Total Environ; 2009 Aug; 407(17):4902-15. PubMed ID: 19501876 [TBL] [Abstract][Full Text] [Related]
13. The SOIL-N/WEKU model system--a GIS-supported tool for the assessment and management of diffuse nitrogen leaching at the scale of river basins. Wendland F; Kunkel R; Grimvall A; Kronvang B; Müller-Wohlfeil DI Water Sci Technol; 2002; 45(9):285-92. PubMed ID: 12079115 [TBL] [Abstract][Full Text] [Related]
14. Geo-referenced modeling of zinc concentrations in the Ruhr river basin (Germany) using the model GREAT-ER. Hüffmeyer N; Klasmeier J; Matthies M Sci Total Environ; 2009 Mar; 407(7):2296-305. PubMed ID: 19150732 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen retention in a river system and the effects of river morphology and lakes. Venohr M; Donohue I; Fogelberg S; Arheimer B; Irvine K; Behrendt H Water Sci Technol; 2005; 51(3-4):19-29. PubMed ID: 15850170 [TBL] [Abstract][Full Text] [Related]
16. Over-parameterised, uncertain 'mathematical marionettes' - how can we best use catchment water quality models? An example of an 80-year catchment-scale nutrient balance. Wade AJ; Jackson BM; Butterfield D Sci Total Environ; 2008 Aug; 400(1-3):52-74. PubMed ID: 18538825 [TBL] [Abstract][Full Text] [Related]
17. Annual nutrients export modelling by analysis of landuse and topographic information: case of a small Mediterranean catchment. Payraudeau S; Tournoud MG; Cernesson F; Picot B Water Sci Technol; 2001; 44(2-3):321-7. PubMed ID: 11548001 [TBL] [Abstract][Full Text] [Related]
18. Nutrient loads in the river mouth of the Río Verde basin in Jalisco, Mexico: how to prevent eutrophication in the future reservoir? Jayme-Torres G; Hansen AM Environ Sci Pollut Res Int; 2018 Jul; 25(21):20497-20509. PubMed ID: 28980187 [TBL] [Abstract][Full Text] [Related]
19. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain. Ledoux E; Gomez E; Monget JM; Viavattene C; Viennot P; Ducharne A; Benoit M; Mignolet C; Schott C; Mary B Sci Total Environ; 2007 Apr; 375(1-3):33-47. PubMed ID: 17275068 [TBL] [Abstract][Full Text] [Related]
20. A long-term view of nutrient transfers through the Seine river continuum. Billen G; Garnier J; Némery J; Sebilo M; Sferratore A; Barles S; Benoit P; Benoît M Sci Total Environ; 2007 Apr; 375(1-3):80-97. PubMed ID: 17239940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]