BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19214093)

  • 1. An in vitro study on the effects of freezing, spine segment, repeat measurement, and individual cord properties on cord interstitial pressure.
    Bassi M; Jarzem PF; Steibel M; Barriga P; Ouellet J; Reindl R
    Spine (Phila Pa 1976); 2009 Feb; 34(4):351-5. PubMed ID: 19214093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord distraction: an in vitro study of length, tension, and tissue pressure.
    Jarzem PF; Kostuik JP; Filiaggi M; Doyle DJ; Ethier R; Tator CH
    J Spinal Disord; 1991 Jun; 4(2):177-82. PubMed ID: 1806082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigating spinal cord distraction injuries: the effect of durotomy in decreasing cord interstitial pressure in vitro.
    Awwad W; Bassi M; Shrier I; Al-Ahaideb A; Steele RJ; Jarzem PF
    Eur J Orthop Surg Traumatol; 2014 Jul; 24 Suppl 1():S261-7. PubMed ID: 24442383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the flat torso versus the elevated torso shoulder pad removal techniques in a cadaveric cervical spine instability model.
    Horodyski M; DiPaola CP; DiPaola MJ; Conrad BP; Del Rossi G; Rechtine GR
    Spine (Phila Pa 1976); 2009 Apr; 34(7):687-91. PubMed ID: 19333100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frozen storage increases the ultimate compressive load of porcine vertebrae.
    Callaghan JP; McGill SM
    J Orthop Res; 1995 Sep; 13(5):809-12. PubMed ID: 7472761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immature sheep spines are more flexible than mature spines: an in vitro biomechanical study.
    Clarke EC; Appleyard RC; Bilston LE
    Spine (Phila Pa 1976); 2007 Dec; 32(26):2970-9. PubMed ID: 18091489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translational constraint influences dynamic spinal canal occlusion of the thoracic spine: an in vitro experimental study.
    Zhu Q; Lane C; Ching RP; Gordon JD; Fisher CG; Dvorak MF; Cripton PA; Oxland TR
    J Biomech; 2008; 41(1):171-9. PubMed ID: 17709110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis.
    Li XF; Dai LY
    Spine (Phila Pa 1976); 2009 May; 34(11):1140-7. PubMed ID: 19444060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surgical instrumentation for the in vivo determination of human lumbar spinal segment stiffness and viscoelasticity.
    Ambrosetti-Giudici S; Pfenniger A; Krenn MH; Piotrowski WP; Ferguson SJ; Burger J
    Med Eng Phys; 2009 Nov; 31(9):1063-8. PubMed ID: 19631570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical properties of rat spinal cord in vitro.
    Fiford RJ; Bilston LE
    J Biomech; 2005 Jul; 38(7):1509-15. PubMed ID: 15922762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural space and biomechanical integrity of the developing cervical spine in compression.
    Nuckley DJ; Van Nausdle JA; Eck MP; Ching RP
    Spine (Phila Pa 1976); 2007 Mar; 32(6):E181-7. PubMed ID: 17413458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of flash freezing on variability in spinal cord compression behavior.
    Sparrey CJ; Keaveny TM
    J Biomech Eng; 2009 Nov; 131(11):111010. PubMed ID: 20353261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental biomechanics of the cervical spine: Tension and compression.
    Nuckley DJ; Ching RP
    J Biomech; 2006; 39(16):3045-54. PubMed ID: 16321394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relaxation of forces needed to distract cervical vertebrae after discectomy: a biomechanical study.
    Aryan HE; Newman CB; Lu DC; Hu SS; Tay BK; Bradford DS; Puttlitz CM; Ames CP
    J Spinal Disord Tech; 2009 Apr; 22(2):100-4. PubMed ID: 19342931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prior storage conditions and loading rate affect the in vitro fracture response of spinal segments under impact loading.
    Dudli S; Haschtmann D; Ferguson SJ
    J Biomech; 2011 Sep; 44(13):2351-5. PubMed ID: 21803360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibration modes of injured spine at resonant frequencies under vertical vibration.
    Guo LX; Zhang M; Zhang YM; Teo EC
    Spine (Phila Pa 1976); 2009 Sep; 34(19):E682-8. PubMed ID: 19730200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cord/spine motion in experimental spinal cord injury.
    Maiman DJ; Coats J; Myklebust JB
    J Spinal Disord; 1989 Mar; 2(1):14-9. PubMed ID: 2520055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusive oxidative stress following acute spinal cord injury in guinea pigs and its inhibition by polyethylene glycol.
    Luo J; Shi R
    Neurosci Lett; 2004 Apr; 359(3):167-70. PubMed ID: 15050690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-dimensional finite element model of the cervical spine with spinal cord: an investigation of three injury mechanisms.
    Greaves CY; Gadala MS; Oxland TR
    Ann Biomed Eng; 2008 Mar; 36(3):396-405. PubMed ID: 18228144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.