These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 1921430)
1. Blood and brain tissue gaseous strategy for profoundly hypothermic total circulatory arrest. Watanabe T; Miura M; Inui K; Minowa T; Shimanuki T; Nishimura K; Washio M J Thorac Cardiovasc Surg; 1991 Oct; 102(4):497-504. PubMed ID: 1921430 [TBL] [Abstract][Full Text] [Related]
2. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. Pulsatile assistance for circulatory arrest, low-flow perfusion, and moderate-flow perfusion. Watanabe T; Miura M; Orita H; Kobayasi M; Washio M J Thorac Cardiovasc Surg; 1990 Aug; 100(2):274-80. PubMed ID: 2117099 [TBL] [Abstract][Full Text] [Related]
3. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. Comparative study of circulatory arrest, nonpulsatile low-flow perfusion, and pulsatile low-flow perfusion. Watanabe T; Orita H; Kobayashi M; Washio M J Thorac Cardiovasc Surg; 1989 Mar; 97(3):396-401. PubMed ID: 2493109 [TBL] [Abstract][Full Text] [Related]
4. Relation of pH strategy and developmental outcome after hypothermic circulatory arrest. Jonas RA; Bellinger DC; Rappaport LA; Wernovsky G; Hickey PR; Farrell DM; Newburger JW J Thorac Cardiovasc Surg; 1993 Aug; 106(2):362-8. PubMed ID: 8341077 [TBL] [Abstract][Full Text] [Related]
5. Blood gas management and degree of cooling: effects on cerebral metabolism before and after circulatory arrest. Skaryak LA; Chai PJ; Kern FH; Greeley WJ; Ungerleider RM J Thorac Cardiovasc Surg; 1995 Dec; 110(6):1649-57. PubMed ID: 8523875 [TBL] [Abstract][Full Text] [Related]
6. [Pulsatile assistance for profoundly hypothermic circulatory arrest, low-flow perfusion, and moderate-flow perfusion: comparative study of brain tissue pH, PO2, and PCO2]. Watanabe T; Miura M; Kohno M; Nemoto H; Orita H; Nishimura K; Shimanuki T; Nakamura C; Kobayashi M; Washio M Nihon Kyobu Geka Gakkai Zasshi; 1989 Dec; 37(12):2449-55. PubMed ID: 2516526 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of alpha-stat and pH-stat strategies with a membrane oxygenator during deep hypothermic circulatory arrest in young pigs. Kim WG; Lim C; Moon HJ; Kim YJ Artif Organs; 2000 Nov; 24(11):908-12. PubMed ID: 11119081 [TBL] [Abstract][Full Text] [Related]
8. Effects of pH management during deep hypothermic bypass on cerebral microcirculation: alpha-stat versus pH-stat. Duebener LF; Hagino I; Sakamoto T; Mime LB; Stamm C; Zurakowski D; Schäfers HJ; Jonas RA Circulation; 2002 Sep; 106(12 Suppl 1):I103-8. PubMed ID: 12354717 [TBL] [Abstract][Full Text] [Related]
9. The importance of acid-base management for cardiac and cerebral preservation during open heart operations. Swan H Surg Gynecol Obstet; 1984 Apr; 158(4):391-414. PubMed ID: 6424251 [TBL] [Abstract][Full Text] [Related]
10. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs. Priestley MA; Golden JA; O'Hara IB; McCann J; Kurth CD J Thorac Cardiovasc Surg; 2001 Feb; 121(2):336-43. PubMed ID: 11174740 [TBL] [Abstract][Full Text] [Related]
12. pH-stat versus alpha-stat acid-base management strategy during hypothermic circulatory arrest combined with embolic brain injury. Dahlbacka S; Heikkinen J; Kaakinen T; Laurila P; Vainionpää V; Kiviluoma K; Salomäki T; Tuominen H; Ohtonen P; Biancari F; Lepola P; Juvonen T Ann Thorac Surg; 2005 Apr; 79(4):1316-25. PubMed ID: 15797070 [TBL] [Abstract][Full Text] [Related]
13. Effect of PCO2-adjusted pH on the neonatal heart during hypothermic perfusion and ischemia. Eton D; Billingsley AM; Laks H; Chang P J Thorac Cardiovasc Surg; 1990 Dec; 100(6):902-9. PubMed ID: 2123278 [TBL] [Abstract][Full Text] [Related]
14. Time course of ischemic alterations during normothermic and hypothermic arrest and its reflection by on-line monitoring of tissue pH. Lange R; Kloner RA; Zierler M; Carlson N; Seiler M; Khuri SF J Thorac Cardiovasc Surg; 1983 Sep; 86(3):418-34. PubMed ID: 6411999 [TBL] [Abstract][Full Text] [Related]
15. Con: pH-stat management of blood gases is preferable to alpha-stat in patients undergoing brain cooling for cardiac surgery. Burrows FA J Cardiothorac Vasc Anesth; 1995 Apr; 9(2):219-21. PubMed ID: 7780082 [No Abstract] [Full Text] [Related]
16. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435 [TBL] [Abstract][Full Text] [Related]
17. Recovery of cerebral blood flow and energy state in piglets after hypothermic circulatory arrest versus recovery after low-flow bypass. Kawata H; Fackler JC; Aoki M; Tsuji MK; Sawatari K; Offutt M; Hickey PR; Holtzman D; Jonas RA J Thorac Cardiovasc Surg; 1993 Oct; 106(4):671-85. PubMed ID: 8412262 [TBL] [Abstract][Full Text] [Related]
18. Antegrade selective cerebral perfusion combined with deep hypothermic circulatory arrest on cerebral circulation: comparison between pulsatile and nonpulsatile blood flows. Soeda M Ann Thorac Cardiovasc Surg; 2007 Apr; 13(2):93-101. PubMed ID: 17505416 [TBL] [Abstract][Full Text] [Related]
20. Comparison of pH-stat versus Alpha-stat during hypothermic cardiopulmonary bypass in the prevention and control of acidosis in cardiac surgery. Piccioni MA; Leirner AA; Auler JO Artif Organs; 2004 Apr; 28(4):347-52. PubMed ID: 15084194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]