BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 19214319)

  • 21. Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms.
    Tan YN; Lee KH; Su X
    Anal Chem; 2011 Jun; 83(11):4251-7. PubMed ID: 21524056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colorimetric enzymatic activity assay based on noncrosslinking aggregation of gold nanoparticles induced by adsorption of substrate peptides.
    Oishi J; Asami Y; Mori T; Kang JH; Niidome T; Katayama Y
    Biomacromolecules; 2008 Sep; 9(9):2301-8. PubMed ID: 18680343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controllable g5p-protein-directed aggregation of ssDNA-gold nanoparticles.
    Lee SK; Maye MM; Zhang YB; Gang O; van der Lelie D
    Langmuir; 2009 Jan; 25(2):657-60. PubMed ID: 19072316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics and mechanism of single-stranded DNA adsorption onto citrate-stabilized gold nanoparticles in colloidal solution.
    Nelson EM; Rothberg LJ
    Langmuir; 2011 Mar; 27(5):1770-7. PubMed ID: 21218826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of mercury detection based on interaction of single-strand DNA and hybridized DNA with gold nanoparticles.
    Zuo X; Wu H; Toh J; Li SF
    Talanta; 2010 Oct; 82(5):1642-6. PubMed ID: 20875557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors.
    Zhao W; Lam JC; Chiuman W; Brook MA; Li Y
    Small; 2008 Jun; 4(6):810-6. PubMed ID: 18537135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer.
    Song KM; Cho M; Jo H; Min K; Jeon SH; Kim T; Han MS; Ku JK; Ban C
    Anal Biochem; 2011 Aug; 415(2):175-81. PubMed ID: 21530479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymatic disassembly of DNA-gold nanostructures.
    Kanaras AG; Wang Z; Brust M; Cosstick R; Bates AD
    Small; 2007 Apr; 3(4):590-4. PubMed ID: 17315237
    [No Abstract]   [Full Text] [Related]  

  • 29. Adenosine detection by using gold nanoparticles and designed aptamer sequences.
    Li F; Zhang J; Cao X; Wang L; Li D; Song S; Ye B; Fan C
    Analyst; 2009 Jul; 134(7):1355-60. PubMed ID: 19562201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.
    Chen YT; Hsu CL; Hou SY
    Anal Biochem; 2008 Apr; 375(2):299-305. PubMed ID: 18211817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple, rapid, homogeneous oligonucleotides colorimetric detection based on non-aggregated gold nanoparticles.
    Liu Y; Wu Z; Zhou G; He Z; Zhou X; Shen A; Hu J
    Chem Commun (Camb); 2012 Mar; 48(26):3164-6. PubMed ID: 22331200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles.
    Jiang Y; Zhao H; Zhu N; Lin Y; Yu P; Mao L
    Angew Chem Int Ed Engl; 2008; 47(45):8601-4. PubMed ID: 18846526
    [No Abstract]   [Full Text] [Related]  

  • 33. A simple and specific assay for real-time colorimetric visualization of beta-lactamase activity by using gold nanoparticles.
    Liu R; Liew R; Zhou J; Xing B
    Angew Chem Int Ed Engl; 2007; 46(46):8799-803. PubMed ID: 17943938
    [No Abstract]   [Full Text] [Related]  

  • 34. Periodic assembly of nanospecies on repetitive DNA sequences generated on gold nanoparticles by rolling circle amplification.
    Zhao W; Brook MA; Li Y
    Methods Mol Biol; 2008; 474():79-90. PubMed ID: 19031062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simple and rapid colorimetric detection of cofactors of aptazymes using noncrosslinking gold nanoparticle aggregation.
    Ogawa A; Maeda M
    Bioorg Med Chem Lett; 2008 Dec; 18(24):6517-20. PubMed ID: 18952416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Label-free detection of specific DNA sequence-telomere using unmodified gold nanoparticles as colorimetric probes.
    Qi Y; Li L; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):127-31. PubMed ID: 19523870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly selective colorimetric detection of spermine in biosamples on basis of the non-crosslinking aggregation of ssDNA-capped gold nanoparticles.
    Liu ZD; Zhu HY; Zhao HX; Huang CZ
    Talanta; 2013 Mar; 106():255-60. PubMed ID: 23598125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unusual sequence length-dependent gold nanoparticles aggregation of the ssDNA sticky end and its application for enzyme-free and signal amplified colorimetric DNA detection.
    He H; Dai J; Duan Z; Zheng B; Meng Y; Guo Y; Dan Xiao
    Sci Rep; 2016 Aug; 6():30878. PubMed ID: 27477392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrophysiological study of single gold nanoparticle/alpha-Hemolysin complex formation: a nanotool to slow down ssDNA through the alpha-Hemolysin nanopore.
    Astier Y; Uzun O; Stellacci F
    Small; 2009 Jun; 5(11):1273-8. PubMed ID: 19242940
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.