BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19214326)

  • 1. High-precision heteronuclear 2D NMR experiments using 10-ppm spectral window to resolve carbon overlap.
    Vitorge B; Bieri S; Humam M; Christen P; Hostettmann K; Muñoz O; Loss S; Jeannerat D
    Chem Commun (Camb); 2009 Feb; (8):950-2. PubMed ID: 19214326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limitations in the deduction of carbon NMR spectra from the f1 dimension of standard 2D heteronuclear experiments when applied to natural products.
    Sandusky P
    J Nat Prod; 2007 Dec; 70(12):1895-900. PubMed ID: 17994704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple ultrafast, broadband 2D NMR spectra of hyperpolarized natural products.
    Giraudeau P; Shrot Y; Frydman L
    J Am Chem Soc; 2009 Oct; 131(39):13902-3. PubMed ID: 19743849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer optimized spectral aliasing in the indirect dimension of (1)H-(13)C heteronuclear 2D NMR experiments. A new algorithm and examples of applications to small molecules.
    Jeannerat D
    J Magn Reson; 2007 May; 186(1):112-22. PubMed ID: 17321175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Multiplicity Editing in Long-Range Heteronuclear Correlation NMR Experiments: A Valuable Tool for the Structure Elucidation of Natural Products.
    Saurí J; Frédérich M; Tchinda AT; Parella T; Williamson RT; Martin GE
    J Nat Prod; 2015 Sep; 78(9):2236-41. PubMed ID: 26305494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High resolution 1H detected 1H,13C correlation spectra in MAS solid-state NMR using deuterated proteins with selective 1H,2H isotopic labeling of methyl groups.
    Agarwal V; Diehl A; Skrynnikov N; Reif B
    J Am Chem Soc; 2006 Oct; 128(39):12620-1. PubMed ID: 17002335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NASCA-HMBC, a new NMR methodology for the resolution of severely overlapping signals: application to the study of agathisflavone.
    Njock GB; Bartholomeusz TA; Foroozandeh M; Pegnyemb DE; Christen P; Jeannerat D
    Phytochem Anal; 2012; 23(2):126-30. PubMed ID: 21594945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the geometry of acetoxyendiynes and acetoxyenynes by NMR heteronuclear (13)C-(1)H scalar couplings and (13)C NMR chemical shifts. Structural assignment of the oxylipin natural products peyssonenynes A and B.
    García P; Martín-Pastor M; de Lera AR; Alvarez R
    Magn Reson Chem; 2010 Jul; 48(7):543-9. PubMed ID: 20535768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-dimensional ROESY experiments with full sensitivity and reliable cross-peak integration when applied to natural products.
    Furrer J
    J Nat Prod; 2009 Aug; 72(8):1437-41. PubMed ID: 19639988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral aliasing: a super zoom for 2D-NMR spectra. Principles and applications.
    Njock GB; Pegnyem DE; Bartholomeusz TA; Christen P; Vitorge B; Nuzillard JM; Shivapurkar R; Foroozandeh M; Jeannerat D
    Chimia (Aarau); 2010; 64(4):235-40. PubMed ID: 21138189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteronuclear two-bond correlation: suppressing heteronuclear three-bond or higher NMR correlations while enhancing two-bond correlations even for vanishing 2J(CH).
    Nyberg NT; Duus JO; Sørensen OW
    J Am Chem Soc; 2005 May; 127(17):6154-5. PubMed ID: 15853304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heteronuclear selective refocusing 2D NMR experiments for the spectral analysis of enantiomers in chiral oriented solvents.
    Farjon J; Baltaze JP; Lesot P; Merlet D; Courtieu J
    Magn Reson Chem; 2004 Jul; 42(7):594-9. PubMed ID: 15181629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CLIP/CLAP-HSQC: pure absorptive spectra for the measurement of one-bond couplings.
    Enthart A; Freudenberger JC; Furrer J; Kessler H; Luy B
    J Magn Reson; 2008 Jun; 192(2):314-22. PubMed ID: 18411067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 13C NMR spectroscopy of core heme carbons as a simple tool to elucidate the coordination state of ferric high-spin heme proteins.
    Alontaga AY; Bunce RA; Wilks A; Rivera M
    Inorg Chem; 2006 Oct; 45(22):8876-81. PubMed ID: 17054345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interactions.
    Shrot Y; Shapira B; Frydman L
    J Magn Reson; 2004 Nov; 171(1):163-70. PubMed ID: 15504696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substituent effects of the N,N-dimethyl- sulfamoyl group on the 1H and 13C NMR spectra of positional isomers of quinolines.
    Maślankiewicz A; Maślankiewicz MJ; Marciniec K
    Magn Reson Chem; 2008 Feb; 46(2):182-5. PubMed ID: 18088082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adiabatic low-pass J filters for artifact suppression in heteronuclear NMR.
    Meier S; Benie AJ; Duus JØ; Sørensen OW
    Chemphyschem; 2009 Apr; 10(6):893-5. PubMed ID: 19288490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of new natural products by application of X-hitting, a novel algorithm for automated comparison of full UV spectra, combined with structural determination by NMR spectroscopy.
    Larsen TO; Petersen BO; Duus JØ; Sørensen D; Frisvad JC; Hansen ME
    J Nat Prod; 2005 Jun; 68(6):871-4. PubMed ID: 15974610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR of natural products at the 'nanomole-scale'.
    Molinski TF
    Nat Prod Rep; 2010 Mar; 27(3):321-9. PubMed ID: 20179874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband carbon-13 correlation spectra of microcrystalline proteins in very high magnetic fields.
    Weingarth M; Bodenhausen G; Tekely P
    J Am Chem Soc; 2009 Oct; 131(39):13937-9. PubMed ID: 19743847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.