BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 19214497)

  • 21. Task Distribution between Acetate and Acetoin Pathways To Prolong Growth in Lactococcus lactis under Respiration Conditions.
    Cesselin B; Garrigues C; Pedersen MB; Roussel C; Gruss A; Gaudu P
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030222
    [No Abstract]   [Full Text] [Related]  

  • 22. Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation.
    Eschbach M; Schreiber K; Trunk K; Buer J; Jahn D; Schobert M
    J Bacteriol; 2004 Jul; 186(14):4596-604. PubMed ID: 15231792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2012 Aug; 51(3):125-30. PubMed ID: 22759530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions.
    Yasuda K; Jojima T; Suda M; Okino S; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):853-60. PubMed ID: 17909785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CcpA mutants with differential activities in Bacillus subtilis.
    Sprehe M; Seidel G; Diel M; Hillen W
    J Mol Microbiol Biotechnol; 2007; 12(1-2):96-105. PubMed ID: 17183216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of the CesR-regulated genes llmg0169 and llmg2164-2163 to Lactococcus lactis fitness.
    Roces C; Campelo AB; Veiga P; Pinto JP; Rodríguez A; Martínez B
    Int J Food Microbiol; 2009 Aug; 133(3):279-85. PubMed ID: 19559493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetics and Physiology of Acetate Metabolism by the Pta-Ack Pathway of Streptococcus mutans.
    Kim JN; Ahn SJ; Burne RA
    Appl Environ Microbiol; 2015 Aug; 81(15):5015-25. PubMed ID: 25979891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism.
    Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P
    Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of the NADH-oxidase (Nox) to the aerobic life of Lactobacillus sanfranciscensis DSM20451T.
    Jänsch A; Freiding S; Behr J; Vogel RF
    Food Microbiol; 2011 Feb; 28(1):29-37. PubMed ID: 21056772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of acetate kinase isozymes and its importance for mixed-acid fermentation in Lactococcus lactis.
    Puri P; Goel A; Bochynska A; Poolman B
    J Bacteriol; 2014 Apr; 196(7):1386-93. PubMed ID: 24464460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein.
    Vemuri GN; Eiteman MA; Altman E
    Biotechnol Bioeng; 2006 Jun; 94(3):538-42. PubMed ID: 16496400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR.
    Neves AR; Ventura R; Mansour N; Shearman C; Gasson MJ; Maycock C; Ramos A; Santos H
    J Biol Chem; 2002 Aug; 277(31):28088-98. PubMed ID: 12011086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scrutinizing a
    Gu L; Zhao S; Tadesse BT; Zhao G; Solem C
    Appl Environ Microbiol; 2024 May; 90(5):e0041424. PubMed ID: 38563750
    [No Abstract]   [Full Text] [Related]  

  • 34. Control of acetate production rate in Escherichia coli by regulating expression of single-copy pta using lacI(Q) in multicopy plasmid.
    Lee SG; Liao JC
    J Microbiol Biotechnol; 2008 Feb; 18(2):334-7. PubMed ID: 18309280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in glycolytic activity of Lactococcus lactis induced by low temperature.
    Wouters JA; Kamphuis HH; Hugenholtz J; Kuipers OP; de Vos WM; Abee T
    Appl Environ Microbiol; 2000 Sep; 66(9):3686-91. PubMed ID: 10966377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GlaR (YugA)-a novel RpiR-family transcription activator of the Leloir pathway of galactose utilization in Lactococcus lactis IL1403.
    Aleksandrzak-Piekarczyk T; Szatraj K; Kosiorek K
    Microbiologyopen; 2019 May; 8(5):e00714. PubMed ID: 30099846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis.
    Guo T; Kong J; Zhang L; Zhang C; Hu S
    PLoS One; 2012; 7(4):e36296. PubMed ID: 22558426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative stress in Lactococcus lactis.
    Miyoshi A; Rochat T; Gratadoux JJ; Le Loir Y; Oliveira SC; Langella P; Azevedo V
    Genet Mol Res; 2003 Dec; 2(4):348-59. PubMed ID: 15011138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux.
    Cocaign-Bousquet M; Even S; Lindley ND; Loubière P
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):24-32. PubMed ID: 12382039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of penicillin tolerance by inactivating the carbon catabolite repression determinant CcpA in Streptococcus gordonii.
    Bizzini A; Entenza JM; Moreillon P
    J Antimicrob Chemother; 2007 Apr; 59(4):607-15. PubMed ID: 17327292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.