BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19214583)

  • 1. Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna.
    Schutz AE; Bond WJ; Cramer MD
    Oecologia; 2009 May; 160(2):235-46. PubMed ID: 19214583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fire and fire intensity on the germination and establishment of Acacia karroo, Acacia nilotica, Acacia luederitzii and Dichrostachys cinerea in the field.
    Walters M; Midgley JJ; Somers MJ
    BMC Ecol; 2004 Apr; 4():3. PubMed ID: 15068486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil.
    Hoffmann WA; Adasme R; Haridasan M; de Carvalho MT; Geiger EL; Pereira MA; Gotsch SG; Franco AC
    Ecology; 2009 May; 90(5):1326-37. PubMed ID: 19537552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caught in a fire trap: recurring fire creates stable size equilibria in woody resprouters.
    Grady JM; Hoffmann WA
    Ecology; 2012 Sep; 93(9):2052-60. PubMed ID: 23094377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trait shifts associated with the subshrub life-history strategy in a tropical savanna.
    Giroldo AB; Scariot A; Hoffmann WA
    Oecologia; 2017 Oct; 185(2):281-291. PubMed ID: 28840340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent enhancement of water relations during post-fire resprouting.
    Schafer JL; Breslow BP; Hollingsworth SN; Hohmann MG; Hoffmann WA
    Tree Physiol; 2014 Apr; 34(4):404-14. PubMed ID: 24682534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A synthesis of postfire recovery traits of woody plants in Australian ecosystems.
    Clarke PJ; Lawes MJ; Murphy BP; Russell-Smith J; Nano CE; Bradstock R; Enright NJ; Fontaine JB; Gosper CR; Radford I; Midgley JJ; Gunton RM
    Sci Total Environ; 2015 Nov; 534():31-42. PubMed ID: 25887372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Top-down determinants of niche structure and adaptation among African Acacias.
    Staver AC; Bond WJ; Cramer MD; Wakeling JL
    Ecol Lett; 2012 Jul; 15(7):673-9. PubMed ID: 22507561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-fire effects on development of leaves and secondary vascular tissues in Quercus pubescens.
    Gričar J; Hafner P; Lavrič M; Ferlan M; Ogrinc N; Krajnc B; Eler K; Vodnik D
    Tree Physiol; 2020 May; 40(6):796-809. PubMed ID: 32175576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of four decades of fire manipulation on woody vegetation structure in Savanna.
    Higgins SI; Bond WJ; February EC; Bronn A; Euston-Brown DI; Enslin B; Govender N; Rademan L; O'Regan S; Potgieter AL; Scheiter S; Sowry R; Trollope L; Trollope WS
    Ecology; 2007 May; 88(5):1119-25. PubMed ID: 17536398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon dioxide and the uneasy interactions of trees and savannah grasses.
    Bond WJ; Midgley GF
    Philos Trans R Soc Lond B Biol Sci; 2012 Feb; 367(1588):601-12. PubMed ID: 22232770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of an accidental dry-season fire on the reproductive phenology of two Neotropical savanna shrubs.
    Dodonov P; Zanelli CB; Silva-Matos DM
    Braz J Biol; 2018 Aug; 78(3):564-573. PubMed ID: 29091119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in plant belowground resource allocation across heterogeneous landscapes: implications for post-fire resprouting.
    Magaña-Hernández E; Zuloaga-Aguilar S; Cuevas-Guzmán R; Pausas JG
    Am J Bot; 2020 Aug; 107(8):1114-1121. PubMed ID: 32830864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Better lucky than good: How savanna trees escape the fire trap in a variable world.
    Hoffmann WA; Sanders RW; Just MG; Wall WA; Hohmann MG
    Ecology; 2020 Jan; 101(1):e02895. PubMed ID: 31529703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Winners and losers: tropical forest tree seedling survival across a West African forest-savanna transition.
    Cardoso AW; Medina-Vega JA; Malhi Y; Adu-Bredu S; Ametsitsi GK; Djagbletey G; van Langevelde F; Veenendaal E; Oliveras I
    Ecol Evol; 2016 May; 6(10):3417-29. PubMed ID: 27127608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fire frequency and season on resprouting of woody plants in southeastern US pine-grassland communities.
    Robertson KM; Hmielowski TL
    Oecologia; 2014 Mar; 174(3):765-76. PubMed ID: 24213629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequent fires prime plant developmental responses to burning.
    Simpson KJ; Olofsson JK; Ripley BS; Osborne CP
    Proc Biol Sci; 2019 Aug; 286(1909):20191315. PubMed ID: 31431130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resprouting by seedlings of four North American deciduous broadleaved tree species following experimental burning.
    Keyser TL
    Oecologia; 2019 May; 190(1):207-218. PubMed ID: 31016382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Fire Mosaics, Habitat Characteristics and Cattle Disturbance on Mammals in Fire-Prone Savanna Landscapes of the Northern Kimberley.
    Radford IJ; Gibson LA; Corey B; Carnes K; Fairman R
    PLoS One; 2015; 10(6):e0130721. PubMed ID: 26121581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural adjustments in resprouting trees drive differences in post-fire transpiration.
    Nolan RH; Mitchell PJ; Bradstock RA; Lane PN
    Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.