BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19214808)

  • 1. Heterologous expression of a salinity and developmentally regulated rice cyclophilin gene (OsCyp2) in E. coli and S. cerevisiae confers tolerance towards multiple abiotic stresses.
    Kumari S; Singh P; Singla-Pareek SL; Pareek A
    Mol Biotechnol; 2009 Jun; 42(2):195-204. PubMed ID: 19214808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation.
    Kumari S; Joshi R; Singh K; Roy S; Tripathi AK; Singh P; Singla-Pareek SL; Pareek A
    Funct Integr Genomics; 2015 Jul; 15(4):395-412. PubMed ID: 25523384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed.
    Ruan SL; Ma HS; Wang SH; Fu YP; Xin Y; Liu WZ; Wang F; Tong JX; Wang SZ; Chen HZ
    BMC Plant Biol; 2011 Feb; 11():34. PubMed ID: 21324151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OsCyp2-P, an auxin-responsive cyclophilin, regulates Ca
    Roy S; Mishra M; Kaur G; Singh S; Rawat N; Singh P; Singla-Pareek SL; Pareek A
    Physiol Plant; 2022 Mar; 174(2):e13631. PubMed ID: 35049071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance.
    Sekhar K; Priyanka B; Reddy VD; Rao KV
    Plant Cell Environ; 2010 Aug; 33(8):1324-38. PubMed ID: 20374537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L.
    He S; Tan L; Hu Z; Chen G; Wang G; Hu T
    Mol Genet Genomics; 2012 Jan; 287(1):39-54. PubMed ID: 22127413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of the transcription factor MYC2-like to the ABRE of the OsCYP2 promoter enhances salt tolerance in Oryza sativa.
    Liu H; Cui P; Zhang B; Zhu J; Liu C; Li Q
    PLoS One; 2022; 17(10):e0276075. PubMed ID: 36240213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of the two cyclophilin isoforms of Sinorhizobium meliloti.
    Thomloudi EE; Skagia A; Venieraki A; Katinakis P; Dimou M
    World J Microbiol Biotechnol; 2017 Feb; 33(2):28. PubMed ID: 28058638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome wide analysis of Cyclophilin gene family from rice and Arabidopsis and its comparison with yeast.
    Trivedi DK; Yadav S; Vaid N; Tuteja N
    Plant Signal Behav; 2012 Dec; 7(12):1653-66. PubMed ID: 23073011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of cyclophilin A-like protein from Piriformospora indica for its potential role to abiotic stress tolerance in E. coli.
    Trivedi DK; Ansari MW; Dutta T; Singh P; Tuteja N
    BMC Res Notes; 2013 Dec; 6():555. PubMed ID: 24365575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rice jacalin-related mannose-binding lectin gene, OsJRL, enhances Escherichia coli viability under high salinity stress and improves salinity tolerance of rice.
    He X; Li L; Xu H; Xi J; Cao X; Xu H; Rong S; Dong Y; Wang C; Chen R; Xu J; Gao X; Xu Z
    Plant Biol (Stuttg); 2017 Mar; 19(2):257-267. PubMed ID: 27718311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice cyclophilin OsCYP18-2 is translocated to the nucleus by an interaction with SKIP and enhances drought tolerance in rice and Arabidopsis.
    Lee SS; Park HJ; Yoon DH; Kim BG; Ahn JC; Luan S; Cho HS
    Plant Cell Environ; 2015 Oct; 38(10):2071-87. PubMed ID: 25847193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of yeast cyclophilin A (Cpr1) provides improved stress tolerance in Escherichia coli.
    Kim IS; Shin SY; Kim YS; Kim HY; Lee DH; Park KM; Yoon HS; Jin I
    J Microbiol Biotechnol; 2010 Jun; 20(6):974-7. PubMed ID: 20622494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of OsLEA1a and its inhibitory effect on the resistance of E. coli to diverse abiotic stresses.
    Hu T; Zhou N; Fu M; Qin J; Huang X
    Int J Biol Macromol; 2016 Oct; 91():1010-7. PubMed ID: 27339321
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Acevedo LA; Nicholson LK
    Biomol NMR Assign; 2018 Apr; 12(1):171-174. PubMed ID: 29353448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Cysteine Residues in Regulation of Peptidyl-prolyl cis-trans Isomerase Activity of Wheat Cyclophilin TaCYPA-1.
    Kaur G; Singh H; Kaur K; Roy S; Pareek A; Singh P
    Protein Pept Lett; 2017; 24(6):551-560. PubMed ID: 28425861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A zinc finger protein, interacted with cyclophilin, affects root development via IAA pathway in rice.
    Cui P; Liu H; Ruan S; Ali B; Gill RA; Ma H; Zheng Z; Zhou W
    J Integr Plant Biol; 2017 Jul; 59(7):496-505. PubMed ID: 28267270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and regulation of salt upregulated cyclophilin from a halotolerant strain of Penicillium oxalicum.
    Singh M; Singh H; Kaur K; Shubhankar S; Singh S; Kaur A; Singh P
    Sci Rep; 2023 Oct; 13(1):17433. PubMed ID: 37833355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yellow lupine cyclophilin interacts with nucleic acids.
    Nuc K; Leśniewicz K; Nuc P; Słomski R
    Protein Pept Lett; 2008; 15(7):719-23. PubMed ID: 18782068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli cyclophilin B binds a highly distorted form of trans-prolyl peptide isomer.
    Konno M; Sano Y; Okudaira K; Kawaguchi Y; Yamagishi-Ohmori Y; Fushinobu S; Matsuzawa H
    Eur J Biochem; 2004 Sep; 271(18):3794-803. PubMed ID: 15355356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.