BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 19215066)

  • 1. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor.
    Lubin AA; Hunt BV; White RJ; Plaxco KW
    Anal Chem; 2009 Mar; 81(6):2150-8. PubMed ID: 19215066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing.
    Xiao Y; Lai RY; Plaxco KW
    Nat Protoc; 2007; 2(11):2875-80. PubMed ID: 18007622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of an electrochemical DNA assay by using a 48-electrode array and redox amplification studies by means of scanning electrochemical microscopy.
    Neugebauer S; Zimdars A; Liepold P; Gebala M; Schuhmann W; Hartwich G
    Chembiochem; 2009 May; 10(7):1193-9. PubMed ID: 19353601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization.
    Kavanagh P; Leech D
    Anal Chem; 2006 Apr; 78(8):2710-6. PubMed ID: 16615783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor.
    Kjällman TH; Peng H; Soeller C; Travas-Sejdic J
    Anal Chem; 2008 Dec; 80(24):9460-6. PubMed ID: 19006336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors.
    Yu ZG; Zaitouna AJ; Lai RY
    Anal Chim Acta; 2014 Feb; 812():176-83. PubMed ID: 24491779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex.
    Zhang J; Qi H; Li Y; Yang J; Gao Q; Zhang C
    Anal Chem; 2008 Apr; 80(8):2888-94. PubMed ID: 18338873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual-signalling electrochemical DNA sensor based on target hybridization-induced change in DNA probe flexibility.
    Yang W; Lai RY
    Chem Commun (Camb); 2012 Sep; 48(69):8703-5. PubMed ID: 22825042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay.
    Zhang Y; Wang Y; Wang H; Jiang JH; Shen GL; Yu RQ; Li J
    Anal Chem; 2009 Mar; 81(5):1982-7. PubMed ID: 19173619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear, redox modified DNA probes as electrochemical DNA sensors.
    Ricci F; Lai RY; Plaxco KW
    Chem Commun (Camb); 2007 Sep; (36):3768-70. PubMed ID: 17851622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous gold electrode as a platform for the construction of an electrochemical DNA hybridization biosensor.
    Ahangar LE; Mehrgardi MA
    Biosens Bioelectron; 2012; 38(1):252-7. PubMed ID: 22727625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the stem-loop and linear probe-based electrochemical DNA sensors by alternating current voltammetry and cyclic voltammetry.
    Yang W; Lai RY
    Langmuir; 2011 Dec; 27(23):14669-77. PubMed ID: 21981414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment.
    Yang J; Yang T; Feng Y; Jiao K
    Anal Biochem; 2007 Jun; 365(1):24-30. PubMed ID: 17420003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalization of single-walled carbon nanotubes for direct and selective electrochemical detection of DNA.
    Zhang QD; Piro B; Noël V; Reisberg S; Pham MC
    Analyst; 2011 Mar; 136(5):1023-8. PubMed ID: 21165475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation study of probe-target hybridization in model DNA microarrays: effect of probe surface density and target concentration.
    Jayaraman A; Hall CK; Genzer J
    J Chem Phys; 2007 Oct; 127(14):144912. PubMed ID: 17935444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical DNA biosensor for the detection of specific gene related to Trichoderma harzianum species.
    Siddiquee S; Yusof NA; Salleh AB; Abu Bakar F; Heng LY
    Bioelectrochemistry; 2010 Aug; 79(1):31-6. PubMed ID: 19945357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reagentless and reusable electrochemical DNA sensor based on target hybridization-induced stem-loop probe formation.
    Yu ZG; Lai RY
    Chem Commun (Camb); 2012 Nov; 48(85):10523-5. PubMed ID: 22992567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an electrochemical polypyrrole-based DNA sensor and subsequent studies on the effects of probe and target length on performance.
    Booth MA; Harbison S; Travas-Sejdic J
    Biosens Bioelectron; 2011 Oct; 28(1):362-7. PubMed ID: 21840199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.
    Pang J; Zhang Z; Jin H
    Biosens Bioelectron; 2016 Mar; 77():174-81. PubMed ID: 26406458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.
    Farjami E; Clima L; Gothelf KV; Ferapontova EE
    Analyst; 2010 Jun; 135(6):1443-8. PubMed ID: 20369213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.