BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19215142)

  • 1. In vitro biosynthesis of unnatural enterocin and wailupemycin polyketides.
    Kalaitzis JA; Cheng Q; Thomas PM; Kelleher NL; Moore BS
    J Nat Prod; 2009 Mar; 72(3):469-72. PubMed ID: 19215142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic total synthesis of enterocin polyketides.
    Cheng Q; Xiang L; Izumikawa M; Meluzzi D; Moore BS
    Nat Chem Biol; 2007 Sep; 3(9):557-8. PubMed ID: 17704772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery, biosynthesis, and rational engineering of novel enterocin and wailupemycin polyketide analogues.
    Kalaitzis JA
    Methods Mol Biol; 2013; 1055():171-89. PubMed ID: 23963911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate 'Streptomyces maritimus': evidence for the derailment of an aromatic polyketide synthase.
    Piel J; Hertweck C; Shipley PR; Hunt DM; Newman MS; Moore BS
    Chem Biol; 2000 Dec; 7(12):943-55. PubMed ID: 11137817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutasynthesis of enterocin and wailupemycin analogues.
    Kalaitzis JA; Izumikawa M; Xiang L; Hertweck C; Moore BS
    J Am Chem Soc; 2003 Aug; 125(31):9290-1. PubMed ID: 12889947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin.
    Bonet B; Teufel R; Crüsemann M; Ziemert N; Moore BS
    J Nat Prod; 2015 Mar; 78(3):539-42. PubMed ID: 25382643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting marine actinomycete biosynthetic pathways for drug discovery.
    Moore BS; Kalaitzis JA; Xiang L
    Antonie Van Leeuwenhoek; 2005 Jan; 87(1):49-57. PubMed ID: 15726291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Policing starter unit selection of the enterocin type II polyketide synthase by the type II thioesterase EncL.
    Kalaitzis JA; Cheng Q; Meluzzi D; Xiang L; Izumikawa M; Dorrestein PC; Moore BS
    Bioorg Med Chem; 2011 Nov; 19(22):6633-8. PubMed ID: 21531566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone.
    Moore BS; Hertweck C; Hopke JN; Izumikawa M; Kalaitzis JA; Nilsen G; O'Hare T; Piel J; Shipley PR; Xiang L; Austin MB; Noel JP
    J Nat Prod; 2002 Dec; 65(12):1956-62. PubMed ID: 12502351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotype-driven isolation of enterocin with novel bioactivities from mangrove-derived Streptomyces qinglanensis 172205.
    Xu DB; Ma M; Deng ZX; Hong K
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):5825-32. PubMed ID: 25895087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Context-dependent behavior of the enterocin iterative polyketide synthase; a new model for ketoreduction.
    Hertweck C; Xiang L; Kalaitzis JA; Cheng Q; Palzer M; Moore BS
    Chem Biol; 2004 Apr; 11(4):461-8. PubMed ID: 15123240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering the formation and selection of benzylmalonyl-CoA from the biosynthesis of splenocin and enterocin reveals a versatile way to introduce amino acids into polyketide carbon scaffolds.
    Chang C; Huang R; Yan Y; Ma H; Dai Z; Zhang B; Deng Z; Liu W; Qu X
    J Am Chem Soc; 2015 Apr; 137(12):4183-90. PubMed ID: 25763681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of modular polyketide synthases: morphing the aureothin pathway into a luteoreticulin assembly line.
    Sugimoto Y; Ding L; Ishida K; Hertweck C
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1560-4. PubMed ID: 24402879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EncM, a versatile enterocin biosynthetic enzyme involved in Favorskii oxidative rearrangement, aldol condensation, and heterocycle-forming reactions.
    Xiang L; Kalaitzis JA; Moore BS
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15609-14. PubMed ID: 15505225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Griseorhodins D-F, neuroactive intermediates and end products of post-PKS tailoring modification in Griseorhodin biosynthesis.
    Lin Z; Zachariah MM; Marett L; Hughen RW; Teichert RW; Concepcion GP; Haygood MG; Olivera BM; Light AR; Schmidt EW
    J Nat Prod; 2014 May; 77(5):1224-30. PubMed ID: 24786728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of metabolic diversity in polyketide-derived pyrones: using the non-colinear aureothin assembly line as a model system.
    Busch B; Hertweck C
    Phytochemistry; 2009; 70(15-16):1833-40. PubMed ID: 19651421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lomaiviticin biosynthesis employs a new strategy for starter unit generation.
    Waldman AJ; Balskus EP
    Org Lett; 2014 Jan; 16(2):640-3. PubMed ID: 24383813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Starter unit flexibility for engineered product synthesis by the nonreducing polyketide synthase PksA.
    Huitt-Roehl CR; Hill EA; Adams MM; Vagstad AL; Li JW; Townsend CA
    ACS Chem Biol; 2015 Jun; 10(6):1443-9. PubMed ID: 25714897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of Single-Domain Function in a Modular Assembly Line Alters the Size and Shape of a Complex Polyketide.
    Peng H; Ishida K; Hertweck C
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):18252-18256. PubMed ID: 31595618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered biosynthesis of regioselectively modified aromatic polyketides using bimodular polyketide synthases.
    Tang Y; Lee TS; Khosla C
    PLoS Biol; 2004 Feb; 2(2):E31. PubMed ID: 14966533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.