These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1921515)

  • 1. Effect of aging on the buffering capacity of fast-twitch skeletal muscle.
    Spriet LL; Campbell CB; Dyck DJ
    Mech Ageing Dev; 1991 Jun; 59(3):243-52. PubMed ID: 1921515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and histochemical characteristics of motor units in cat tibialis anterior and extensor digitorum longus muscles.
    Dum RP; Kennedy TT
    J Neurophysiol; 1980 Jun; 43(6):1615-30. PubMed ID: 6447772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in K+, Na+ and calcium contents during in vivo stimulation of rat skeletal muscle.
    Everts ME; Lømo T; Clausen T
    Acta Physiol Scand; 1993 Apr; 147(4):357-68. PubMed ID: 8388152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taurine transport in chronically stimulated fast- and slow-twitch muscles of the rat.
    Kim BK; Baba A; Iwata H
    Jpn J Pharmacol; 1986 Nov; 42(3):441-6. PubMed ID: 3820861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle adaptations to hindlimb suspension in mature and old Fischer 344 rats.
    Stump CS; Tipton CM; Henriksen EJ
    J Appl Physiol (1985); 1997 Jun; 82(6):1875-81. PubMed ID: 9173953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective long-term electrical stimulation of fast glycolytic fibres increases capillary supply but not oxidative enzyme activity in rat skeletal muscles.
    Egginton S; Hudlická O
    Exp Physiol; 2000 Sep; 85(5):567-73. PubMed ID: 11038408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased oxidative capacity does not protect skeletal muscle fibers from eccentric contraction-induced injury.
    Patel TJ; Cuizon D; Mathieu-Costello O; Fridén J; Lieber RL
    Am J Physiol; 1998 May; 274(5):R1300-8. PubMed ID: 9644043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of long-term electrical stimulation on vascular supply and fatigue in chronically ischemic muscles.
    Hudlicka O; Brown MD; Egginton S; Dawson JM
    J Appl Physiol (1985); 1994 Sep; 77(3):1317-24. PubMed ID: 7836136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat.
    Gorza L; Gundersen K; Lømo T; Schiaffino S; Westgaard RH
    J Physiol; 1988 Aug; 402():627-49. PubMed ID: 3236251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle-specific decrease in presynaptic calcium dependence and clearance during neuromuscular transmission in aged rats.
    Smith DO
    J Neurophysiol; 1988 Apr; 59(4):1069-82. PubMed ID: 2836566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonic Anhydrase III Is Expressed in Mouse Skeletal Muscles Independent of Fiber Type-Specific Myofilament Protein Isoforms and Plays a Role in Fatigue Resistance.
    Feng HZ; Jin JP
    Front Physiol; 2016; 7():597. PubMed ID: 28018233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle.
    Hiebert GW; Whelan PJ; Prochazka A; Pearson KG
    J Neurophysiol; 1996 Mar; 75(3):1126-37. PubMed ID: 8867123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermuscular interaction via myofascial force transmission: effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle.
    Maas H; Baan GC; Huijing PA
    J Biomech; 2001 Jul; 34(7):927-40. PubMed ID: 11410176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive potentials of skeletal muscle in young and aging rats.
    Pette D; Skorjanc D
    Int J Sport Nutr Exerc Metab; 2001 Dec; 11 Suppl():S3-8. PubMed ID: 11915926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical stimulation resembling normal motor-unit activity: effects on denervated fast and slow rat muscles.
    Eken T; Gundersen K
    J Physiol; 1988 Aug; 402():651-69. PubMed ID: 3236252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in ultrastructural and metabolic profiles within the same type of fibres in various muscles of young and adult rats.
    Takekura H; Kasuga N; Yoshioka T
    Acta Physiol Scand; 1994 Mar; 150(3):335-44. PubMed ID: 8010140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes of aqueous protein profiles in rat fast and slow twitch skeletal muscles.
    Cai D; Li M; Lee K; Lee K; Wong W; Chan K
    Electrophoresis; 2000 Jan; 21(2):465-72. PubMed ID: 10675029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in intrinsic mitochondrial function with aging are fiber type-specific and do not explain differential atrophy between muscles.
    Picard M; Ritchie D; Thomas MM; Wright KJ; Hepple RT
    Aging Cell; 2011 Dec; 10(6):1047-55. PubMed ID: 21933339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early changes in fiber profile and capillary density in long-term stimulated muscles.
    Hudlická O; Dodd L; Renkin EM; Gray SD
    Am J Physiol; 1982 Oct; 243(4):H528-35. PubMed ID: 6214958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of age on enzyme-histochemical fibre spectra and contractile properties of fast- and slow-twitch skeletal muscles in the rat.
    Larsson L; Edström L
    J Neurol Sci; 1986 Nov; 76(1):69-89. PubMed ID: 2946814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.