BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 19215237)

  • 1. Regulation of renal medullary circulation by the renin-angiotensin system in genetically hypertensive rats.
    Liu KL
    Clin Exp Pharmacol Physiol; 2009 May; 36(5-6):455-61. PubMed ID: 19215237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin II and neurohumoral control of the renal medullary circulation.
    Evans RG; Head GA; Eppel GA; Burke SL; Rajapakse NW
    Clin Exp Pharmacol Physiol; 2010 Feb; 37(2):e58-69. PubMed ID: 19566838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of perindopril on renal medullary hemodynamics in genetically hypertensive rats.
    Liu KL; Lo M; Benzoni D
    Am J Hypertens; 2006 Jun; 19(6):617-22. PubMed ID: 16733235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of angiotensin in the renal vasoconstriction observed during the development of genetic hypertension.
    Arendshorst WJ; Chatziantoniou C; Daniels FH
    Kidney Int Suppl; 1990 Nov; 30():S92-6. PubMed ID: 2259085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin II and renal medullary blood flow in Lyon rats.
    Sarkis A; Liu KL; Lo M; Benzoni D
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F365-72. PubMed ID: 12529274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Ang II and renal sympathetic nerve influence dopamine-and isoprenaline-induced renal haemodynamic changes in normal Wistar-Kyoto and spontaneously hypertensive rats.
    Abdulla MH; Sattar MA; Abdullah NA; Hazim AI; Anand Swarup KR; Rathore HA; Khan MA; Johns EJ
    Auton Autacoid Pharmacol; 2008 Oct; 28(4):95-101. PubMed ID: 18778332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence against a crucial role of renal medullary perfusion in blood pressure control of hypertensive rats.
    Bądzyńska B; Baranowska I; Gawryś O; Sadowski J
    J Physiol; 2019 Jan; 597(1):211-223. PubMed ID: 30334256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal mechanisms of angiotensin II-induced hypertension.
    Granger JP; Schnackenberg CG
    Semin Nephrol; 2000 Sep; 20(5):417-25. PubMed ID: 11022893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of perindopril on renal medullary blood flow: comparison with other antihypertensive treatments.
    Issiakhem M; Liu KL; Benzoni D
    J Cardiovasc Pharmacol; 2008 Mar; 51(3):280-5. PubMed ID: 18356693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective effect of tempol on renal medullary hemodynamics in spontaneously hypertensive rats.
    Feng MG; Dukacz SA; Kline RL
    Am J Physiol Regul Integr Comp Physiol; 2001 Nov; 281(5):R1420-5. PubMed ID: 11641111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The renin-angiotensin system: renal actions and blood pressure regulation.
    Hall JE
    Compr Ther; 1991 May; 17(5):8-17. PubMed ID: 1879129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural control of renal medullary perfusion.
    Eppel GA; Malpas SC; Denton KM; Evans RG
    Clin Exp Pharmacol Physiol; 2004; 31(5-6):387-96. PubMed ID: 15191418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Renal hemodynamic effect of angiotensin II type 2 receptor].
    Hamada K
    Nihon Jinzo Gakkai Shi; 2001; 43(1):28-34. PubMed ID: 11218315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lyon genetically hypertensive rats: an animal model of "low renin hypertension".
    Sassard J; Lo M; Liu KL
    Acta Pharmacol Sin; 2003 Jan; 24(1):1-6. PubMed ID: 12511223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benazepril, an angiotensin-converting enzyme inhibitor, alleviates renal injury in spontaneously hypertensive rats by inhibiting advanced glycation end-product-mediated pathways.
    Liu XP; Pang YJ; Zhu WW; Zhao TT; Zheng M; Wang YB; Sun ZJ; Sun SJ
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):287-96. PubMed ID: 19018797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental selective elevation of renal medullary blood flow in hypertensive rats: evidence against short-term hypotensive effect.
    Bądzyńska B; Sadowski J
    Acta Physiol (Oxf); 2012 Aug; 205(4):484-93. PubMed ID: 22429683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Autoregulation of kidney circulation, glomerular filtration rate and plasma renin activity in spontaneously hypertensive rats and normotensive Wistar rats].
    Wende P; Strauch M; Unger T; Gretz N; Rohmeiss P
    Med Klin (Munich); 1993 Apr; 88(4):207-11. PubMed ID: 8492775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prehypertensive renin-angiotensin-aldosterone system blockade in spontaneously hypertensive rats ameliorates the loss of long-term vascular function.
    Baumann M; Megens R; Bartholome R; Dolff S; van Zandvoort MA; Smits JF; Struijker-Boudier HA; De Mey JG
    Hypertens Res; 2007 Sep; 30(9):853-61. PubMed ID: 18037779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of renal medullary circulation on arterial pressure.
    Cowley AW; Roman RJ; Fenoy FJ; Mattson DL
    J Hypertens Suppl; 1992 Dec; 10(7):S187-93. PubMed ID: 1291653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetes-induced increase of renal medullary hydrogen peroxide and urinary angiotensinogen is similar in normotensive and hypertensive rats.
    Patinha D; Afonso J; Sousa T; Morato M; Albino-Teixeira A
    Life Sci; 2014 Jul; 108(2):71-9. PubMed ID: 24862547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.