These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 19215963)
21. Production of particulate Composition B during simulated weathering of larger detonation residues. Fuller ME; Schaefer CE; Andaya C; Fallis S J Hazard Mater; 2015; 283():1-6. PubMed ID: 25262478 [TBL] [Abstract][Full Text] [Related]
22. Halide salts accelerate degradation of high explosives by zerovalent iron. Kim JS; Shea PJ; Yang JE; Kim JE Environ Pollut; 2007 Jun; 147(3):634-41. PubMed ID: 17241724 [TBL] [Abstract][Full Text] [Related]
23. Field observations of the persistence of Comp B explosives residues in a salt marsh impact area. Walsh ME; Taylor S; Hewitt AD; Walsh MR; Ramsey CA; Collins CM Chemosphere; 2010 Jan; 78(4):467-73. PubMed ID: 19883934 [TBL] [Abstract][Full Text] [Related]
24. Fate and transport of TNT, RDX, and HMX in streambed sediments: Implications for riverbank filtration. Zheng W; Lichwa J; D'Alessio M; Ray C Chemosphere; 2009 Aug; 76(9):1167-77. PubMed ID: 19619888 [TBL] [Abstract][Full Text] [Related]
25. Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions. Douglas TA; Walsh ME; McGrath CJ; Weiss CA; Jaramillo AM; Trainor TP Environ Toxicol Chem; 2011 Feb; 30(2):345-53. PubMed ID: 21038362 [TBL] [Abstract][Full Text] [Related]
26. Behavior of energetic materials in ground water at an anti-tank range. Martel R; Mailloux M; Gabriel U; Lefebvre R; Thiboutot S; Ampleman G J Environ Qual; 2009; 38(1):75-92. PubMed ID: 19141797 [TBL] [Abstract][Full Text] [Related]
27. Dissolution rates of three high explosive compounds: TNT, RDX, and HMX. Lynch JC; Brannon JM; Delfino JJ Chemosphere; 2002 May; 47(7):725-34. PubMed ID: 12079068 [TBL] [Abstract][Full Text] [Related]
28. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments. Boparai HK; Comfort SD; Shea PJ; Szecsody JE Chemosphere; 2008 Mar; 71(5):933-41. PubMed ID: 18086486 [TBL] [Abstract][Full Text] [Related]
29. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. Chatterjee S; Deb U; Datta S; Walther C; Gupta DK Chemosphere; 2017 Oct; 184():438-451. PubMed ID: 28618276 [TBL] [Abstract][Full Text] [Related]
30. Dissolution, sorption, and kinetics involved in systems containing explosives, water, and soil. Larson SL; Martin WA; Escalon BL; Thompson M Environ Sci Technol; 2008 Feb; 42(3):786-92. PubMed ID: 18323103 [TBL] [Abstract][Full Text] [Related]
31. TNT particle size distributions from detonated 155-mm howitzer rounds. Taylor S; Hewitt A; Lever J; Hayes C; Perovich L; Thorne P; Daghlian C Chemosphere; 2004 Apr; 55(3):357-67. PubMed ID: 14987934 [TBL] [Abstract][Full Text] [Related]
32. Electrochemical Determination of TNT, DNT, RDX, and HMX with Gold Nanoparticles/Poly(Carbazole-Aniline) Film-Modified Glassy Carbon Sensor Electrodes Imprinted for Molecular Recognition of Nitroaromatics and Nitramines. Sağlam Ş; Üzer A; Erçağ E; Apak R Anal Chem; 2018 Jun; 90(12):7364-7370. PubMed ID: 29786423 [TBL] [Abstract][Full Text] [Related]
33. Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol. Adrian NR; Arnett CM Chemosphere; 2007 Jan; 66(10):1849-56. PubMed ID: 17095047 [TBL] [Abstract][Full Text] [Related]
34. RDX and TNT residues from live-fire and blow-in-place detonations. Hewitt AD; Jenkins TF; Walsh ME; Walsh MR; Taylor S Chemosphere; 2005 Nov; 61(6):888-94. PubMed ID: 15964048 [TBL] [Abstract][Full Text] [Related]
35. Assessing TNT and DNT groundwater contamination by compound-specific isotope analysis and 3H-3He groundwater dating: a case study in Portugal. Amaral HI; Fernandes J; Berg M; Schwarzenbach RP; Kipfer R Chemosphere; 2009 Oct; 77(6):805-12. PubMed ID: 19740509 [TBL] [Abstract][Full Text] [Related]
36. Photocatalytic degradation of explosives contaminated water. Lee SJ; Son HS; Lee HK; Zoh KD Water Sci Technol; 2002; 46(11-12):139-45. PubMed ID: 12523745 [TBL] [Abstract][Full Text] [Related]
37. Solid-phase extraction using hierarchical organosilicates for enhanced detection of nitroenergetic targets. Johnson BJ; Melde BJ; Leska IA; Charles PT; Hewitt AD J Environ Monit; 2011 May; 13(5):1404-9. PubMed ID: 21409222 [TBL] [Abstract][Full Text] [Related]
38. Dissolution of microscale energetic residues in saturated porous media: visualization and quantification at the pore-scale by spectral confocal microscopy. Wang C; Lazouskaya V; Fuller ME; Caplan JL; Schaefer CE; Jin Y Environ Sci Technol; 2011 Oct; 45(19):8352-8. PubMed ID: 21861475 [TBL] [Abstract][Full Text] [Related]
39. Remediating munitions-contaminated soil with zerovalent iron and cationic surfactants. Park J; Comfort SD; Shea PJ; Machacek TA J Environ Qual; 2004; 33(4):1305-13. PubMed ID: 15254112 [TBL] [Abstract][Full Text] [Related]
40. TNT and RDX degradation and extraction from contaminated soil using subcritical water. Islam MN; Shin MS; Jo YT; Park JH Chemosphere; 2015 Jan; 119():1148-1152. PubMed ID: 25460755 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]