These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
499 related articles for article (PubMed ID: 19215964)
1. Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids. Heemsbergen DA; Warne MS; Broos K; Bell M; Nash D; McLaughlin M; Whatmuff M; Barry G; Pritchard D; Penney N Sci Total Environ; 2009 Apr; 407(8):2546-56. PubMed ID: 19215964 [TBL] [Abstract][Full Text] [Related]
2. Models for the field-based toxicity of copper and zinc salts to wheat in 11 Australian soils and comparison to laboratory-based models. Warne MS; Heemsbergen D; McLaughlin M; Bell M; Broos K; Whatmuff M; Barry G; Nash D; Pritchard D; Penney N Environ Pollut; 2008 Dec; 156(3):707-14. PubMed ID: 18653265 [TBL] [Abstract][Full Text] [Related]
3. Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils. Fuentes D; Disante KB; Valdecantos A; Cortina J; Ramón Vallejo V Environ Pollut; 2007 Jan; 145(1):316-23. PubMed ID: 16678319 [TBL] [Abstract][Full Text] [Related]
4. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Cornejo P; Meier S; Borie G; Rillig MC; Borie F Sci Total Environ; 2008 Nov; 406(1-2):154-60. PubMed ID: 18762323 [TBL] [Abstract][Full Text] [Related]
5. Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China. Luo XS; Zhou DM; Liu XH; Wang YJ J Hazard Mater; 2006 Apr; 131(1-3):19-27. PubMed ID: 16260085 [TBL] [Abstract][Full Text] [Related]
6. Linking biosensor responses to Cd, Cu and Zn partitioning in soils. Dawson JJ; Campbell CD; Towers W; Cameron CM; Paton GI Environ Pollut; 2006 Aug; 142(3):493-500. PubMed ID: 16325972 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability of zinc and copper in biosolids compared to their soluble salts. Heemsbergen DA; McLaughlin MJ; Whatmuff M; Warne MS; Broos K; Bell M; Nash D; Barry G; Pritchard D; Penney N Environ Pollut; 2010 May; 158(5):1907-15. PubMed ID: 19932536 [TBL] [Abstract][Full Text] [Related]
8. Effect of amendments on phytoavailability and fractionation of copper and zinc in a contaminated soil. Padmavathiamma PK; Li LY Int J Phytoremediation; 2010 Sep; 12(7):697-715. PubMed ID: 21166277 [TBL] [Abstract][Full Text] [Related]
9. Phytotoxic effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions. Kim B; McBride MB J Environ Qual; 2009; 38(6):2253-9. PubMed ID: 19875781 [TBL] [Abstract][Full Text] [Related]
10. Detection of copper(II) and zinc(II) binding to humic acids from pig slurry and amended soils by fluorescence spectroscopy. Hernández D; Plaza C; Senesi N; Polo A Environ Pollut; 2006 Sep; 143(2):212-20. PubMed ID: 16442681 [TBL] [Abstract][Full Text] [Related]
11. Zinc distribution in soils amended with different kinds of sewage sludge. Torri SI; Lavado R J Environ Manage; 2008 Sep; 88(4):1571-9. PubMed ID: 17889985 [TBL] [Abstract][Full Text] [Related]
12. Phytotoxicity testing of lysimeter leachates from aided phytostabilized Cu-contaminated soils using duckweed (Lemna minor L.). Marchand L; Mench M; Marchand C; Le Coustumer P; Kolbas A; Maalouf JP Sci Total Environ; 2011 Dec; 410-411():146-53. PubMed ID: 22000292 [TBL] [Abstract][Full Text] [Related]
13. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils. Ownby DR; Galvan KA; Lydy MJ Environ Pollut; 2005 Jul; 136(2):315-21. PubMed ID: 15840539 [TBL] [Abstract][Full Text] [Related]
14. Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin. Alvarenga P; Palma P; Gonçalves AP; Baião N; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2008 Aug; 72(11):1774-81. PubMed ID: 18547605 [TBL] [Abstract][Full Text] [Related]
15. Extractability and bioavailability of zinc over time in three tropical soils incubated with biosolids. Hseu ZY Chemosphere; 2006 May; 63(5):762-71. PubMed ID: 16213570 [TBL] [Abstract][Full Text] [Related]
16. Bioavailability of copper and zinc in mining soils. Smith BA; Greenberg B; Stephenson GL Arch Environ Contam Toxicol; 2012 Jan; 62(1):1-12. PubMed ID: 21594672 [TBL] [Abstract][Full Text] [Related]
17. Zinc fractionation in contaminated soils by sequential and single extractions: influence of soil properties and zinc content. Voegelin A; Tokpa G; Jacquat O; Barmettler K; Kretzschmar R J Environ Qual; 2008; 37(3):1190-200. PubMed ID: 18453438 [TBL] [Abstract][Full Text] [Related]
18. Release behavior of copper and zinc from sandy soils. Zhang MK; Xia YP J Environ Sci (China); 2005; 17(4):566-71. PubMed ID: 16158580 [TBL] [Abstract][Full Text] [Related]
19. Effects of readily dispersible colloid on adsorption and transport of Zn, Cu, and Pb in soils. Zhang M; Li W; Yang Y; Chen B; Song F Environ Int; 2005 Aug; 31(6):840-4. PubMed ID: 16024081 [TBL] [Abstract][Full Text] [Related]
20. Influence of pH on copper-zinc competitive adsorption by a sandy soil. Mesquita ME; Carranca C; Menino MR Environ Technol; 2002 Sep; 23(9):1043-50. PubMed ID: 12361377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]