These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 19215968)
1. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Hu X; Cook S; Wang P; Hwang HM Sci Total Environ; 2009 Apr; 407(8):3070-2. PubMed ID: 19215968 [TBL] [Abstract][Full Text] [Related]
2. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Aruoja V; Dubourguier HC; Kasemets K; Kahru A Sci Total Environ; 2009 Feb; 407(4):1461-8. PubMed ID: 19038417 [TBL] [Abstract][Full Text] [Related]
3. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Baek YW; An YJ Sci Total Environ; 2011 Mar; 409(8):1603-8. PubMed ID: 21310463 [TBL] [Abstract][Full Text] [Related]
4. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Pan X; Redding JE; Wiley PA; Wen L; McConnell JS; Zhang B Chemosphere; 2010 Mar; 79(1):113-6. PubMed ID: 20106502 [TBL] [Abstract][Full Text] [Related]
5. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Jiang W; Mashayekhi H; Xing B Environ Pollut; 2009 May; 157(5):1619-25. PubMed ID: 19185963 [TBL] [Abstract][Full Text] [Related]
6. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Horie M; Nishio K; Fujita K; Endoh S; Miyauchi A; Saito Y; Iwahashi H; Yamamoto K; Murayama H; Nakano H; Nanashima N; Niki E; Yoshida Y Chem Res Toxicol; 2009 Mar; 22(3):543-53. PubMed ID: 19216582 [TBL] [Abstract][Full Text] [Related]
7. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Heinlaan M; Ivask A; Blinova I; Dubourguier HC; Kahru A Chemosphere; 2008 Apr; 71(7):1308-16. PubMed ID: 18194809 [TBL] [Abstract][Full Text] [Related]
8. Contribution of physicochemical characteristics of nano-oxides to cytotoxicity. Xu M; Fujita D; Kajiwara S; Minowa T; Li X; Takemura T; Iwai H; Hanagata N Biomaterials; 2010 Nov; 31(31):8022-31. PubMed ID: 20688385 [TBL] [Abstract][Full Text] [Related]
9. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Simon-Deckers A; Loo S; Mayne-L'hermite M; Herlin-Boime N; Menguy N; Reynaud C; Gouget B; Carrière M Environ Sci Technol; 2009 Nov; 43(21):8423-9. PubMed ID: 19924979 [TBL] [Abstract][Full Text] [Related]
10. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Kasemets K; Ivask A; Dubourguier HC; Kahru A Toxicol In Vitro; 2009 Sep; 23(6):1116-22. PubMed ID: 19486936 [TBL] [Abstract][Full Text] [Related]
11. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Mortimer M; Kasemets K; Kahru A Toxicology; 2010 Mar; 269(2-3):182-9. PubMed ID: 19622384 [TBL] [Abstract][Full Text] [Related]
12. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium. Li K; Chen Y; Zhang W; Pu Z; Jiang L; Chen Y Chem Res Toxicol; 2012 Aug; 25(8):1675-81. PubMed ID: 22693953 [TBL] [Abstract][Full Text] [Related]
13. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Sun J; Wang S; Zhao D; Hun FH; Weng L; Liu H Cell Biol Toxicol; 2011 Oct; 27(5):333-42. PubMed ID: 21681618 [TBL] [Abstract][Full Text] [Related]
14. Effect of nanosized gold particle addition to supported metal oxide catalyst in methanol oxidation. Kim KJ; You YJ; Chung MC; Kang CS; Chung KH; Jeong WJ; Jeong SW; Ahn HG J Nanosci Nanotechnol; 2006 Nov; 6(11):3589-93. PubMed ID: 17252817 [TBL] [Abstract][Full Text] [Related]
15. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method. Fjodorova N; Novic M; Gajewicz A; Rasulev B Nanotoxicology; 2017 May; 11(4):475-483. PubMed ID: 28330416 [TBL] [Abstract][Full Text] [Related]
16. Differential genotoxicity of chemical properties and particle size of rare metal and metal oxide nanoparticles. Hasegawa G; Shimonaka M; Ishihara Y J Appl Toxicol; 2012 Jan; 32(1):72-80. PubMed ID: 22162085 [TBL] [Abstract][Full Text] [Related]
17. Cytotoxicity in the age of nano: the role of fourth period transition metal oxide nanoparticle physicochemical properties. Chusuei CC; Wu CH; Mallavarapu S; Hou FY; Hsu CM; Winiarz JG; Aronstam RS; Huang YW Chem Biol Interact; 2013 Nov; 206(2):319-26. PubMed ID: 24120544 [TBL] [Abstract][Full Text] [Related]
18. Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Mu H; Chen Y; Xiao N Bioresour Technol; 2011 Nov; 102(22):10305-11. PubMed ID: 21925874 [TBL] [Abstract][Full Text] [Related]
19. Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. Dasari TP; Pathakoti K; Hwang HM J Environ Sci (China); 2013 May; 25(5):882-8. PubMed ID: 24218817 [TBL] [Abstract][Full Text] [Related]
20. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. Pathakoti K; Huang MJ; Watts JD; He X; Hwang HM J Photochem Photobiol B; 2014 Jan; 130():234-40. PubMed ID: 24362319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]