These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19216050)

  • 1. Adaptive importance sampling for value function approximation in off-policy reinforcement learning.
    Hachiya H; Akiyama T; Sugiayma M; Peters J
    Neural Netw; 2009 Dec; 22(10):1399-410. PubMed ID: 19216050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter-exploring policy gradients.
    Sehnke F; Osendorfer C; Rückstiess T; Graves A; Peters J; Schmidhuber J
    Neural Netw; 2010 May; 23(4):551-9. PubMed ID: 20061118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individualization of pharmacological anemia management using reinforcement learning.
    Gaweda AE; Muezzinoglu MK; Aronoff GR; Jacobs AA; Zurada JM; Brier ME
    Neural Netw; 2005; 18(5-6):826-34. PubMed ID: 16109475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliability of internal prediction/estimation and its application. I. Adaptive action selection reflecting reliability of value function.
    Sakaguchi Y; Takano M
    Neural Netw; 2004 Sep; 17(7):935-52. PubMed ID: 15312837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust reinforcement learning.
    Morimoto J; Doya K
    Neural Comput; 2005 Feb; 17(2):335-59. PubMed ID: 15720771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient sample reuse in policy gradients with parameter-based exploration.
    Zhao T; Hachiya H; Tangkaratt V; Morimoto J; Sugiyama M
    Neural Comput; 2013 Jun; 25(6):1512-47. PubMed ID: 23517103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data splitting for artificial neural networks using SOM-based stratified sampling.
    May RJ; Maier HR; Dandy GC
    Neural Netw; 2010 Mar; 23(2):283-94. PubMed ID: 19959327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parameter control method in reinforcement learning to rapidly follow unexpected environmental changes.
    Murakoshi K; Mizuno J
    Biosystems; 2004 Nov; 77(1-3):109-17. PubMed ID: 15527950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derivatives of logarithmic stationary distributions for policy gradient reinforcement learning.
    Morimura T; Uchibe E; Yoshimoto J; Peters J; Doya K
    Neural Comput; 2010 Feb; 22(2):342-76. PubMed ID: 19842990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and improvement of policy gradient estimation.
    Zhao T; Hachiya H; Niu G; Sugiyama M
    Neural Netw; 2012 Feb; 26():118-29. PubMed ID: 22019189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time reinforcement learning by sequential Actor-Critics and experience replay.
    Wawrzyński P
    Neural Netw; 2009 Dec; 22(10):1484-97. PubMed ID: 19523786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient exploration through active learning for value function approximation in reinforcement learning.
    Akiyama T; Hachiya H; Sugiyama M
    Neural Netw; 2010 Jun; 23(5):639-48. PubMed ID: 20080026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reward-weighted regression with sample reuse for direct policy search in reinforcement learning.
    Hachiya H; Peters J; Sugiyama M
    Neural Comput; 2011 Nov; 23(11):2798-832. PubMed ID: 21851281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elman backpropagation as reinforcement for simple recurrent networks.
    Grüning A
    Neural Comput; 2007 Nov; 19(11):3108-31. PubMed ID: 17883351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A batch ensemble approach to active learning with model selection.
    Sugiyama M; Rubens N
    Neural Netw; 2008 Nov; 21(9):1278-86. PubMed ID: 18650061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for learning to segment temporal sequences, utilizing a mixture of RNN experts together with adaptive variance.
    Namikawa J; Tani J
    Neural Netw; 2008 Dec; 21(10):1466-75. PubMed ID: 18938059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approximate learning algorithm in Boltzmann machines.
    Yasuda M; Tanaka K
    Neural Comput; 2009 Nov; 21(11):3130-78. PubMed ID: 19686066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.
    Lewis FL; Vamvoudakis KG
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):14-25. PubMed ID: 20350860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.
    Valasek J; Doebbler J; Tandale MD; Meade AJ
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):1014-20. PubMed ID: 18632393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite adaptive control with locally weighted statistical learning.
    Nakanishi J; Farrell JA; Schaal S
    Neural Netw; 2005 Jan; 18(1):71-90. PubMed ID: 15649663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.