BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1921645)

  • 1. Imipramine-fentanyl antinociception in a rabbit tooth pulp model.
    Bergman SA; Wynn RL; Alvarez L; Asher K; Thut PD
    Life Sci; 1991; 49(18):1279-88. PubMed ID: 1921645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antinociceptive activity of pentamorphone, a 14-beta-aminomorphinone derivative, compared to fentanyl and morphine.
    Rudo FG; Wynn RL; Ossipov M; Ford RD; Kutcher BA; Carter A; Spaulding TC
    Anesth Analg; 1989 Oct; 69(4):450-6. PubMed ID: 2476953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diazepam enhances fentanyl and diminishes meperidine antinociception.
    Bergman SA; Wyn RL; Williams G
    Anesth Prog; 1988; 35(5):190-4. PubMed ID: 3250278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of midazolam on fentanyl antinociception and respiration in a rabbit model.
    Hyatt J; Coro C; Bergman SA; Wynn RL
    J Oral Maxillofac Surg; 1989 Dec; 47(12):1298-302. PubMed ID: 2511288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low dose naloxone enhances buprenorphine in a tooth pulp antinociceptive assay.
    Bergman SA; Wynn RL; Myers DE; Rudo FG
    Arch Int Pharmacodyn Ther; 1988; 291():229-37. PubMed ID: 3365064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic antinociceptive actions and tolerance development produced by morphine-fentanyl coadministration: correlation with μ-opioid receptor internalization.
    Silva-Moreno A; Gonzalez-Espinosa C; León-Olea M; Cruz SL
    Eur J Pharmacol; 2012 Jan; 674(2-3):239-47. PubMed ID: 22079772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAmimetics diminish antinociception of meperidine under conditions which enhance other opioid mu-agonists.
    Wynn RL; Bergman SA; Rudo FG; Leventer M
    Arch Int Pharmacodyn Ther; 1990; 304():136-46. PubMed ID: 2173504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidural ketamine potentiates epidural morphine but not fentanyl in acute nociception in rats.
    Hoffmann VL; Baker AK; Vercauteren MP; Adriaensen HF; Meert TF
    Eur J Pain; 2003; 7(2):121-30. PubMed ID: 12600793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DPI-3290 [(+)-3-((alpha-R)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide]. II. A mixed opioid agonist with potent antinociceptive activity and limited effects on respiratory function.
    Gengo PJ; Pettit HO; O'Neill SJ; Su YF; McNutt R; Chang KJ
    J Pharmacol Exp Ther; 2003 Dec; 307(3):1227-33. PubMed ID: 14534367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antinociceptive effects of ketamine-opioid combinations in the mouse tail flick test.
    Dambisya YM; Lee TL
    Methods Find Exp Clin Pharmacol; 1994 Apr; 16(3):179-84. PubMed ID: 8046951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An isobolographic analysis of the antinociceptive effect of systemically and intrathecally administered combinations of clonidine and opiates.
    Ossipov MH; Harris S; Lloyd P; Messineo E
    J Pharmacol Exp Ther; 1990 Dec; 255(3):1107-16. PubMed ID: 2262895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible involvement of mu1-opioid receptors in the fentanyl- or morphine-induced antinociception at supraspinal and spinal sites.
    Narita M; Imai S; Itou Y; Yajima Y; Suzuki T
    Life Sci; 2002 Apr; 70(20):2341-54. PubMed ID: 12150199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of fentanyl on the lick/chew response in rabbits.
    Myers DE; Myslinski NR; Wynn RL
    Neuropeptides; 1985 Feb; 5(4-6):407-10. PubMed ID: 4000413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of sham and full spinalization on the systemic potency of mu- and kappa-opioids on spinal nociceptive reflexes in rats.
    Herrero JF; Headley PM
    Br J Pharmacol; 1991 Sep; 104(1):166-70. PubMed ID: 1664760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antinociception and cardiovascular responses produced by intravenous morphine: the role of vagal afferents.
    Randich A; Thurston CL; Ludwig PS; Timmerman MR; Gebhart GF
    Brain Res; 1991 Mar; 543(2):256-70. PubMed ID: 2059834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic mechanism in imipramine and morphine antinoception.
    Bhargava VK; Saha L
    Boll Chim Farm; 2001; 140(3):201-4. PubMed ID: 11486615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imipramine-induced antinociception in the formalin test. Receptor mechanisms involved and effect of swim stress.
    Zarrindast MR; Vousooghi N; Sahebgharani M
    Pharmacology; 2003 Jul; 68(3):154-61. PubMed ID: 12784087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rabbit tooth-pulp assay to determine ED50 values and duration of action of analgesics.
    Wynn RL; El'Baghdady YM; Ford RD; Thut PD; Rudo FG
    J Pharmacol Methods; 1984 Apr; 11(2):109-17. PubMed ID: 6143857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subeffective doses of dexketoprofen trometamol enhance the potency and duration of fentanyl antinociception.
    Gaitán G; Herrero JF
    Br J Pharmacol; 2002 Jan; 135(2):393-8. PubMed ID: 11815374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of secondary hyperalgesia and central sensitization in an acute sheep model.
    Mather LE; Cousins MJ; Huang YF; Pryor ME; Barratt SM
    Reg Anesth Pain Med; 2000; 25(2):174-80. PubMed ID: 10746531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.