These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1921645)

  • 1. Imipramine-fentanyl antinociception in a rabbit tooth pulp model.
    Bergman SA; Wynn RL; Alvarez L; Asher K; Thut PD
    Life Sci; 1991; 49(18):1279-88. PubMed ID: 1921645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antinociceptive activity of pentamorphone, a 14-beta-aminomorphinone derivative, compared to fentanyl and morphine.
    Rudo FG; Wynn RL; Ossipov M; Ford RD; Kutcher BA; Carter A; Spaulding TC
    Anesth Analg; 1989 Oct; 69(4):450-6. PubMed ID: 2476953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diazepam enhances fentanyl and diminishes meperidine antinociception.
    Bergman SA; Wyn RL; Williams G
    Anesth Prog; 1988; 35(5):190-4. PubMed ID: 3250278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of midazolam on fentanyl antinociception and respiration in a rabbit model.
    Hyatt J; Coro C; Bergman SA; Wynn RL
    J Oral Maxillofac Surg; 1989 Dec; 47(12):1298-302. PubMed ID: 2511288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low dose naloxone enhances buprenorphine in a tooth pulp antinociceptive assay.
    Bergman SA; Wynn RL; Myers DE; Rudo FG
    Arch Int Pharmacodyn Ther; 1988; 291():229-37. PubMed ID: 3365064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic antinociceptive actions and tolerance development produced by morphine-fentanyl coadministration: correlation with μ-opioid receptor internalization.
    Silva-Moreno A; Gonzalez-Espinosa C; León-Olea M; Cruz SL
    Eur J Pharmacol; 2012 Jan; 674(2-3):239-47. PubMed ID: 22079772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAmimetics diminish antinociception of meperidine under conditions which enhance other opioid mu-agonists.
    Wynn RL; Bergman SA; Rudo FG; Leventer M
    Arch Int Pharmacodyn Ther; 1990; 304():136-46. PubMed ID: 2173504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidural ketamine potentiates epidural morphine but not fentanyl in acute nociception in rats.
    Hoffmann VL; Baker AK; Vercauteren MP; Adriaensen HF; Meert TF
    Eur J Pain; 2003; 7(2):121-30. PubMed ID: 12600793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DPI-3290 [(+)-3-((alpha-R)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide]. II. A mixed opioid agonist with potent antinociceptive activity and limited effects on respiratory function.
    Gengo PJ; Pettit HO; O'Neill SJ; Su YF; McNutt R; Chang KJ
    J Pharmacol Exp Ther; 2003 Dec; 307(3):1227-33. PubMed ID: 14534367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antinociceptive effects of ketamine-opioid combinations in the mouse tail flick test.
    Dambisya YM; Lee TL
    Methods Find Exp Clin Pharmacol; 1994 Apr; 16(3):179-84. PubMed ID: 8046951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An isobolographic analysis of the antinociceptive effect of systemically and intrathecally administered combinations of clonidine and opiates.
    Ossipov MH; Harris S; Lloyd P; Messineo E
    J Pharmacol Exp Ther; 1990 Dec; 255(3):1107-16. PubMed ID: 2262895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible involvement of mu1-opioid receptors in the fentanyl- or morphine-induced antinociception at supraspinal and spinal sites.
    Narita M; Imai S; Itou Y; Yajima Y; Suzuki T
    Life Sci; 2002 Apr; 70(20):2341-54. PubMed ID: 12150199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of fentanyl on the lick/chew response in rabbits.
    Myers DE; Myslinski NR; Wynn RL
    Neuropeptides; 1985 Feb; 5(4-6):407-10. PubMed ID: 4000413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of sham and full spinalization on the systemic potency of mu- and kappa-opioids on spinal nociceptive reflexes in rats.
    Herrero JF; Headley PM
    Br J Pharmacol; 1991 Sep; 104(1):166-70. PubMed ID: 1664760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antinociception and cardiovascular responses produced by intravenous morphine: the role of vagal afferents.
    Randich A; Thurston CL; Ludwig PS; Timmerman MR; Gebhart GF
    Brain Res; 1991 Mar; 543(2):256-70. PubMed ID: 2059834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic mechanism in imipramine and morphine antinoception.
    Bhargava VK; Saha L
    Boll Chim Farm; 2001; 140(3):201-4. PubMed ID: 11486615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imipramine-induced antinociception in the formalin test. Receptor mechanisms involved and effect of swim stress.
    Zarrindast MR; Vousooghi N; Sahebgharani M
    Pharmacology; 2003 Jul; 68(3):154-61. PubMed ID: 12784087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rabbit tooth-pulp assay to determine ED50 values and duration of action of analgesics.
    Wynn RL; El'Baghdady YM; Ford RD; Thut PD; Rudo FG
    J Pharmacol Methods; 1984 Apr; 11(2):109-17. PubMed ID: 6143857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subeffective doses of dexketoprofen trometamol enhance the potency and duration of fentanyl antinociception.
    Gaitán G; Herrero JF
    Br J Pharmacol; 2002 Jan; 135(2):393-8. PubMed ID: 11815374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of secondary hyperalgesia and central sensitization in an acute sheep model.
    Mather LE; Cousins MJ; Huang YF; Pryor ME; Barratt SM
    Reg Anesth Pain Med; 2000; 25(2):174-80. PubMed ID: 10746531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.