BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19216529)

  • 21. A role for caleosin in degradation of oil-body storage lipid during seed germination.
    Poxleitner M; Rogers SW; Lacey Samuels A; Browse J; Rogers JC
    Plant J; 2006 Sep; 47(6):917-33. PubMed ID: 16961733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coexistence of both oleosin isoforms on the surface of seed oil bodies and their individual stabilization to the organelles.
    Tzen JT; Chuang RL; Chen JC; Wu LS
    J Biochem; 1998 Feb; 123(2):318-23. PubMed ID: 9538209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural properties of caleosin: a MS and CD study.
    Purkrtova Z; d'Andrea S; Jolivet P; Lipovova P; Kralova B; Kodicek M; Chardot T
    Arch Biochem Biophys; 2007 Aug; 464(2):335-43. PubMed ID: 17582382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli.
    Chiang CJ; Chen HC; Chao YP; Tzen JT
    J Agric Food Chem; 2005 Jun; 53(12):4799-804. PubMed ID: 15941319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies.
    Lin LJ; Tai SS; Peng CC; Tzen JT
    Plant Physiol; 2002 Apr; 128(4):1200-11. PubMed ID: 11950969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of caleosin and two oleosin isoforms in oil bodies of pine megagametophytes.
    Pasaribu B; Chung TY; Chen CS; Wang SL; Jiang PL; Tzen JT
    Plant Physiol Biochem; 2014 Sep; 82():142-50. PubMed ID: 24954070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective internalization of self-assembled artificial oil bodies by HER2/neu-positive cells.
    Chiang CJ; Lin LJ; Lin CC; Chang CH; Chao YP
    Nanotechnology; 2011 Jan; 22(1):015102. PubMed ID: 21135463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective delivery of cargo entities to tumor cells by nanoscale artificial oil bodies.
    Chiang CJ; Chen CJ; Lin LJ; Chang CH; Chao YP
    J Agric Food Chem; 2010 Nov; 58(22):11695-702. PubMed ID: 20964433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and function of seed lipid-body-associated proteins.
    Purkrtova Z; Jolivet P; Miquel M; Chardot T
    C R Biol; 2008 Oct; 331(10):746-54. PubMed ID: 18926488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative genomics of the lipid-body-membrane proteins oleosin, caleosin and steroleosin in magnoliophyte, lycophyte and bryophyte.
    Umate P
    Genomics Proteomics Bioinformatics; 2012 Dec; 10(6):345-53. PubMed ID: 23317702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N-terminus of seed caleosins is essential for lipid droplet sorting but not for lipid accumulation.
    Purkrtová Z; Chardot T; Froissard M
    Arch Biochem Biophys; 2015 Aug; 579():47-54. PubMed ID: 26032334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High water solubility and fold in amphipols of proteins with large hydrophobic regions: oleosins and caleosin from seed lipid bodies.
    Gohon Y; Vindigni JD; Pallier A; Wien F; Celia H; Giuliani A; Tribet C; Chardot T; Briozzo P
    Biochim Biophys Acta; 2011 Mar; 1808(3):706-16. PubMed ID: 21146495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of steroleosin in oil bodies of pine megagametophytes.
    Pasaribu B; Chung TY; Chen CS; Jiang PL; Tzen JTC
    Plant Physiol Biochem; 2016 Apr; 101():173-181. PubMed ID: 26897709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Caleosin-assembled oil bodies as a potential delivery nanocarrier.
    Chiang CJ; Lin SC; Lin LJ; Chen CJ; Chao YP
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):1905-15. PubMed ID: 22127752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stable oil bodies sheltered by a unique oleosin in lily pollen.
    Jiang PL; Wang CS; Hsu CM; Jauh GY; Tzen JT
    Plant Cell Physiol; 2007 Jun; 48(6):812-21. PubMed ID: 17468126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars.
    Katavic V; Agrawal GK; Hajduch M; Harris SL; Thelen JJ
    Proteomics; 2006 Aug; 6(16):4586-98. PubMed ID: 16847873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of caleosin and oleosin in oil bodies of pine pollen.
    Pasaribu B; Chen CS; Liao YK; Jiang PL; Tzen JTC
    Plant Physiol Biochem; 2017 Feb; 111():20-29. PubMed ID: 27889638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Delineation of plant caleosin residues critical for functional divergence, positive selection and coevolution.
    Song W; Qin Y; Zhu Y; Yin G; Wu N; Li Y; Hu Y
    BMC Evol Biol; 2014 Jun; 14():124. PubMed ID: 24913827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting.
    Abell BM; Holbrook LA; Abenes M; Murphy DJ; Hills MJ; Moloney MM
    Plant Cell; 1997 Aug; 9(8):1481-93. PubMed ID: 9286116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oil bodies and their associated proteins, oleosin and caleosin.
    Frandsen GI; Mundy J; Tzen JT
    Physiol Plant; 2001 Jul; 112(3):301-307. PubMed ID: 11473685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.