BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19216907)

  • 1. Biochemical and morphological detection of inclusion bodies in autophagy-deficient mice.
    Waguri S; Komatsu M
    Methods Enzymol; 2009; 453():181-96. PubMed ID: 19216907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation.
    Harada M; Hanada S; Toivola DM; Ghori N; Omary MB
    Hepatology; 2008 Jun; 47(6):2026-35. PubMed ID: 18454506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunohistochemical analysis of Marinesco bodies, using antibodies against proteins implicated in the ubiquitin-proteasome system, autophagy and aggresome formation.
    Odagiri S; Tanji K; Mori F; Kakita A; Takahashi H; Kamitani T; Wakabayashi K
    Neuropathology; 2012 Jun; 32(3):261-6. PubMed ID: 22118216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NEDD8 protein is involved in ubiquitinated inclusion bodies.
    Dil Kuazi A; Kito K; Abe Y; Shin RW; Kamitani T; Ueda N
    J Pathol; 2003 Feb; 199(2):259-66. PubMed ID: 12533840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limbic structures are prone to age-related impairments in proteasome activity and neuronal ubiquitinated inclusions in SAMP10 mouse: a model of cerebral degeneration.
    Shimada A; Keino H; Kawamura N; Chiba Y; Hosokawa M
    Neuropathol Appl Neurobiol; 2008 Feb; 34(1):33-51. PubMed ID: 17973906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagic neuron death.
    Uchiyama Y; Koike M; Shibata M; Sasaki M
    Methods Enzymol; 2009; 453():33-51. PubMed ID: 19216901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p62 is involved in the mechanism of Mallory body formation.
    Nan L; Wu Y; Bardag-Gorce F; Li J; French BA; Fu AN; Francis T; Vu J; French SW
    Exp Mol Pathol; 2004 Dec; 77(3):168-75. PubMed ID: 15507232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in degradative pathways and protein aggregation in a neuropathy model based on PMP22 overexpression.
    Fortun J; Go JC; Li J; Amici SA; Dunn WA; Notterpek L
    Neurobiol Dis; 2006 Apr; 22(1):153-64. PubMed ID: 16326107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of distinct inclusion bodies by inhibition of ubiquitin-proteasome and autophagy-lysosome pathways.
    Lee J; Yang KH; Joe CO; Kang SS
    Biochem Biophys Res Commun; 2011 Jan; 404(2):672-7. PubMed ID: 21147067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of autophagic activity in Drosophila neural tissues by measuring the turnover rates of pathway substrates.
    Cumming RC; Simonsen A; Finley KD
    Methods Enzymol; 2008; 451():639-51. PubMed ID: 19185743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of ubiquitin-mediated processes in diseases of the brain and bone.
    Layfield R; Searle MS
    Biochem Soc Trans; 2008 Jun; 36(Pt 3):469-71. PubMed ID: 18481983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy.
    Clausen TH; Lamark T; Isakson P; Finley K; Larsen KB; Brech A; Øvervatn A; Stenmark H; Bjørkøy G; Simonsen A; Johansen T
    Autophagy; 2010 Apr; 6(3):330-44. PubMed ID: 20168092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of macroautophagy in the dissolution of neuronal inclusions.
    Rideout HJ; Lang-Rollin I; Stefanis L
    Int J Biochem Cell Biol; 2004 Dec; 36(12):2551-62. PubMed ID: 15325592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging roles for the ubiquitin-proteasome system and autophagy in pancreatic beta-cells.
    Hartley T; Brumell J; Volchuk A
    Am J Physiol Endocrinol Metab; 2009 Jan; 296(1):E1-10. PubMed ID: 18812463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy modulates keratin-containing inclusion formation and apoptosis in cell culture in a context-dependent fashion.
    Harada M; Strnad P; Toivola DM; Omary MB
    Exp Cell Res; 2008 May; 314(8):1753-64. PubMed ID: 18343366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dysfunctions in endosomal-lysosomal and autophagy pathways underlie neuropathology in a mouse model for Lafora disease.
    Puri R; Suzuki T; Yamakawa K; Ganesh S
    Hum Mol Genet; 2012 Jan; 21(1):175-84. PubMed ID: 21965301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laforin in autophagy: a possible link between carbohydrate and protein in Lafora disease?
    Puri R; Ganesh S
    Autophagy; 2010 Nov; 6(8):1229-31. PubMed ID: 20818153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of ubiquitin immunohistochemistry to the diagnosis of disease.
    Lowe J; Hand N; Mayer RJ
    Methods Enzymol; 2005; 399():86-119. PubMed ID: 16338351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring autophagy by electron microscopy in Mammalian cells.
    Ylä-Anttila P; Vihinen H; Jokitalo E; Eskelinen EL
    Methods Enzymol; 2009; 452():143-64. PubMed ID: 19200881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitin-negative, eosinophilic neuronal cytoplasmic inclusions associated with stress granules and autophagy: an immunohistochemical investigation of two cases.
    Mori F; Watanabe Y; Miki Y; Tanji K; Odagiri S; Eto K; Wakabayashi K
    Neuropathology; 2014 Apr; 34(2):140-7. PubMed ID: 24812700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.