These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
487 related articles for article (PubMed ID: 19216923)
1. Analytical methods for the retrieval and interpretation of continuous glucose monitoring data in diabetes. Kovatchev B; Breton M; Clarke W Methods Enzymol; 2009; 454():69-86. PubMed ID: 19216923 [TBL] [Abstract][Full Text] [Related]
2. Time lag characterization of two continuous glucose monitoring systems. Garg SK; Voelmle M; Gottlieb PA Diabetes Res Clin Pract; 2010 Mar; 87(3):348-53. PubMed ID: 20022127 [TBL] [Abstract][Full Text] [Related]
3. Quantifying temporal glucose variability in diabetes via continuous glucose monitoring: mathematical methods and clinical application. Kovatchev BP; Clarke WL; Breton M; Brayman K; McCall A Diabetes Technol Ther; 2005 Dec; 7(6):849-62. PubMed ID: 16386091 [TBL] [Abstract][Full Text] [Related]
4. Peculiarities of the continuous glucose monitoring data stream and their impact on developing closed-loop control technology. Kovatchev B; Clarke W J Diabetes Sci Technol; 2008 Jan; 2(1):158-63. PubMed ID: 19578532 [TBL] [Abstract][Full Text] [Related]
5. Relationships between glucose variability and conventional measures of glycemic control in continuously monitored patients with type 2 diabetes. Kohnert KD; Vogt L; Augstein P; Heinke P; Zander E; Peterson K; Freyse EJ; Salzsieder E Horm Metab Res; 2009 Feb; 41(2):137-41. PubMed ID: 19214924 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the clinical information provided by the FreeStyle Navigator continuous interstitial glucose monitor versus traditional blood glucose readings. McGarraugh GV; Clarke WL; Kovatchev BP Diabetes Technol Ther; 2010 May; 12(5):365-71. PubMed ID: 20388046 [TBL] [Abstract][Full Text] [Related]
7. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Pérez-Gandía C; Facchinetti A; Sparacino G; Cobelli C; Gómez EJ; Rigla M; de Leiva A; Hernando ME Diabetes Technol Ther; 2010 Jan; 12(1):81-8. PubMed ID: 20082589 [TBL] [Abstract][Full Text] [Related]
8. An online self-tunable method to denoise CGM sensor data. Facchinetti A; Sparacino G; Cobelli C IEEE Trans Biomed Eng; 2010 Mar; 57(3):634-41. PubMed ID: 19822467 [TBL] [Abstract][Full Text] [Related]
9. Continuous glucose monitoring in type 2 diabetes. Harman-Boehm I Diabetes Res Clin Pract; 2008 Dec; 82 Suppl 2():S118-21. PubMed ID: 19027978 [TBL] [Abstract][Full Text] [Related]
10. The nuts and bolts of achieving end points with real-time continuous glucose monitoring. Wolpert HA Diabetes Care; 2008 Feb; 31 Suppl 2():S146-9. PubMed ID: 18227476 [TBL] [Abstract][Full Text] [Related]
11. Detection of a meal using continuous glucose monitoring: implications for an artificial beta-cell. Dassau E; Bequette BW; Buckingham BA; Doyle FJ Diabetes Care; 2008 Feb; 31(2):295-300. PubMed ID: 17977934 [TBL] [Abstract][Full Text] [Related]
12. Continuous glucose monitoring: an overview of today's technologies and their clinical applications. Heinemann L; Koschinsky T Int J Clin Pract Suppl; 2002 Jul; (129):75-9. PubMed ID: 12166611 [TBL] [Abstract][Full Text] [Related]
13. A predictive tool for the self-management of diabetes (Librae): evaluation using a continuous glucose monitoring system. Franklin VL; Wilson AW; Butler RA; Greene SA Diabet Med; 2006 Jan; 23(1):21-5. PubMed ID: 16409561 [TBL] [Abstract][Full Text] [Related]
14. Rate-of-Change Dependence of the Performance of Two CGM Systems During Induced Glucose Swings. Pleus S; Schoemaker M; Morgenstern K; Schmelzeisen-Redeker G; Haug C; Link M; Zschornack E; Freckmann G J Diabetes Sci Technol; 2015 Jul; 9(4):801-7. PubMed ID: 25852074 [TBL] [Abstract][Full Text] [Related]
15. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. Sparacino G; Zanderigo F; Corazza S; Maran A; Facchinetti A; Cobelli C IEEE Trans Biomed Eng; 2007 May; 54(5):931-7. PubMed ID: 17518291 [TBL] [Abstract][Full Text] [Related]
16. The rationale for paired pre- and postprandial self-monitoring of blood glucose: the role of glycemic variability in micro- and macrovascular risk. Gerich JE; Odawara M; Terauchi Y Curr Med Res Opin; 2007 Aug; 23(8):1791-8. PubMed ID: 17610805 [TBL] [Abstract][Full Text] [Related]
17. An overview and commentary on retrospective, continuous glucose monitoring for the optimisation of care for people with diabetes. Currie CJ; Poole CD; Papo NL Curr Med Res Opin; 2009 Oct; 25(10):2389-400. PubMed ID: 19650750 [TBL] [Abstract][Full Text] [Related]
18. A stochastic model to assess the variability of blood glucose time series in diabetic patients self-monitoring. Magni P; Bellazzi R IEEE Trans Biomed Eng; 2006 Jun; 53(6):977-85. PubMed ID: 16761824 [TBL] [Abstract][Full Text] [Related]
19. Accuracy of a portable glucose meter and of a Continuous Glucose Monitoring device used at home by patients with type 1 diabetes. Francescato MP; Geat M; Stel G; Cauci S Clin Chim Acta; 2012 Jan; 413(1-2):312-8. PubMed ID: 22032826 [TBL] [Abstract][Full Text] [Related]
20. The role of continuous glucose monitoring in clinical decision-making in diabetes in pregnancy. McLachlan K; Jenkins A; O'Neal D Aust N Z J Obstet Gynaecol; 2007 Jun; 47(3):186-90. PubMed ID: 17550484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]