These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19216927)

  • 1. A computational approach for the rational design of stable proteins and enzymes: optimization of surface charge-charge interactions.
    Schweiker KL; Makhatadze GI
    Methods Enzymol; 2009; 454():175-211. PubMed ID: 19216927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein stabilization by the rational design of surface charge-charge interactions.
    Schweiker KL; Makhatadze GI
    Methods Mol Biol; 2009; 490():261-83. PubMed ID: 19157087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein stability and surface electrostatics: a charged relationship.
    Strickler SS; Gribenko AV; Gribenko AV; Keiffer TR; Tomlinson J; Reihle T; Loladze VV; Makhatadze GI
    Biochemistry; 2006 Mar; 45(9):2761-6. PubMed ID: 16503630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins.
    Gribenko AV; Makhatadze GI
    J Mol Biol; 2007 Feb; 366(3):842-56. PubMed ID: 17188709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of charge-to-alanine substitutions on the stability of ribosomal protein L30e from Thermococcus celer.
    Lee CF; Makhatadze GI; Wong KB
    Biochemistry; 2005 Dec; 44(51):16817-25. PubMed ID: 16363795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra-protein hydrogen bonding is dynamically stabilized by electronic polarization.
    Duan LL; Mei Y; Zhang QG; Zhang JZ
    J Chem Phys; 2009 Mar; 130(11):115102. PubMed ID: 19317568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge optimization of the interface between protein kinases and their ligands.
    Sims PA; Wong CF; McCammon JA
    J Comput Chem; 2004 Aug; 25(11):1416-29. PubMed ID: 15185335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatics in computational protein design.
    Vizcarra CL; Mayo SL
    Curr Opin Chem Biol; 2005 Dec; 9(6):622-6. PubMed ID: 16257567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turning a mesophilic protein into a thermophilic one: a computational approach based on 3D structural features.
    Basu S; Sen S
    J Chem Inf Model; 2009 Jul; 49(7):1741-50. PubMed ID: 19586011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of protein stability and aggregation properties by surface charge engineering.
    Raghunathan G; Sokalingam S; Soundrarajan N; Madan B; Munussami G; Lee SG
    Mol Biosyst; 2013 Sep; 9(9):2379-89. PubMed ID: 23861008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational tools for designing and engineering biocatalysts.
    Damborsky J; Brezovsky J
    Curr Opin Chem Biol; 2009 Feb; 13(1):26-34. PubMed ID: 19297237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering proteins with tunable thermodynamic and kinetic stabilities.
    Pey AL; Rodriguez-Larrea D; Bomke S; Dammers S; Godoy-Ruiz R; Garcia-Mira MM; Sanchez-Ruiz JM
    Proteins; 2008 Apr; 71(1):165-74. PubMed ID: 17932922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid/polydiacetylene films for colorimetric protein surface-charge analysis.
    Friedman S; Kolusheva S; Volinsky R; Zeiri L; Schrader T; Jelinek R
    Anal Chem; 2008 Oct; 80(20):7804-11. PubMed ID: 18800813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why are proteins charged? Networks of charge-charge interactions in proteins measured by charge ladders and capillary electrophoresis.
    Gitlin I; Carbeck JD; Whitesides GM
    Angew Chem Int Ed Engl; 2006 May; 45(19):3022-60. PubMed ID: 16619322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational engineering of enzyme stability.
    Eijsink VG; Bjørk A; Gåseidnes S; Sirevåg R; Synstad B; van den Burg B; Vriend G
    J Biotechnol; 2004 Sep; 113(1-3):105-20. PubMed ID: 15380651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonnative electrostatic interactions can modulate protein folding: molecular dynamics with a grain of salt.
    Azia A; Levy Y
    J Mol Biol; 2009 Oct; 393(2):527-42. PubMed ID: 19683007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational design of intermolecular stability and specificity in protein self-assembly.
    Nanda V; Zahid S; Xu F; Levine D
    Methods Enzymol; 2011; 487():575-93. PubMed ID: 21187239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of stable alpha-helices using global sequence optimization.
    Petukhov M; Tatsu Y; Tamaki K; Murase S; Uekawa H; Yoshikawa S; Serrano L; Yumoto N
    J Pept Sci; 2009 May; 15(5):359-65. PubMed ID: 19222027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using charge ladders and capillary electrophoresis to measure the charge, size, and electrostatic interactions of proteins.
    Sharma U; Carbeck JD
    Methods Mol Biol; 2004; 276():189-216. PubMed ID: 15163859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.