These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Deletion of the znuA virulence factor attenuates Actinobacillus pleuropneumoniae and confers protection against homologous or heterologous strain challenge. Yuan F; Liao Y; You W; Liu Z; Tan Y; Zheng C; BinWang ; Zhou D; Tian Y; Bei W Vet Microbiol; 2014 Dec; 174(3-4):531-539. PubMed ID: 25465668 [TBL] [Abstract][Full Text] [Related]
43. Identification of Actinobacillus pleuropneumoniae virulence genes using signature-tagged mutagenesis in a swine infection model. Fuller TE; Martin S; Teel JF; Alaniz GR; Kennedy MJ; Lowery DE Microb Pathog; 2000 Jul; 29(1):39-51. PubMed ID: 10873489 [TBL] [Abstract][Full Text] [Related]
44. Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae. Brogaard L; Klitgaard K; Heegaard PM; Hansen MS; Jensen TK; Skovgaard K BMC Genomics; 2015 May; 16(1):417. PubMed ID: 26018580 [TBL] [Abstract][Full Text] [Related]
45. Fhua and HgbA, outer membrane proteins of Actinobacillus pleuropneumoniae: their role as virulence determinants. Shakarji L; Mikael LG; Srikumar R; Kobisch M; Coulton JW; Jacques M Can J Microbiol; 2006 Apr; 52(4):391-6. PubMed ID: 16699590 [TBL] [Abstract][Full Text] [Related]
46. Urease activity may contribute to the ability of Actinobacillus pleuropneumoniae to establish infection. Bossé JT; MacInnes JI Can J Vet Res; 2000 Jul; 64(3):145-50. PubMed ID: 10935879 [TBL] [Abstract][Full Text] [Related]
47. In situ hybridization for the detection of the apxIV gene in the lungs of pigs experimentally infected with twelve Actinobacillus pleuropneumoniae serotypes. Cho WS; Choi C; Chae C Vet Res; 2002; 33(6):653-60. PubMed ID: 12498566 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of immunogenicity and protective efficacy of Actinobacillus pleuropneumoniae HB04C(-) mutant lacking a drug resistance marker in the pigs. Bei W; He Q; Zhou R; Yan L; Huang H; Chen H Vet Microbiol; 2007 Nov; 125(1-2):120-7. PubMed ID: 17580102 [TBL] [Abstract][Full Text] [Related]
49. Actinobacillus pleuropneumoniae metalloprotease: cloning and in vivo expression. García González O; García RM; de la Garza M; Vaca S; Paniagua GL; Mejía R; Tenorio VR; Negrete-Abascal E FEMS Microbiol Lett; 2004 May; 234(1):81-6. PubMed ID: 15109723 [TBL] [Abstract][Full Text] [Related]
50. An evaluation of the apxIVA based PCR-REA method for differentiation of Actinobacillus pleuropneumoniae. Turni C; Blackall PJ Vet Microbiol; 2007 Mar; 121(1-2):163-9. PubMed ID: 17169508 [TBL] [Abstract][Full Text] [Related]
51. Comparison of virulence of different Actinobacillus pleuropneumoniae serotypes and biotypes using an aerosol infection model. Jacobsen MJ; Nielsen JP; Nielsen R Vet Microbiol; 1996 Apr; 49(3-4):159-68. PubMed ID: 8734634 [TBL] [Abstract][Full Text] [Related]
53. Potential use an Actinobacillus pleuropneumoniae double mutant strain DeltaapxIICDeltaapxIVA as live vaccine that allows serological differentiation between vaccinated and infected animals. Liu J; Chen X; Lin L; Tan C; Chen Y; Guo Y; Jin M; Guo A; Bei W; Chen H Vaccine; 2007 Nov; 25(44):7696-705. PubMed ID: 17767980 [TBL] [Abstract][Full Text] [Related]
54. Experimental infection of SPF pigs with Actinobacillus pleuropneumoniae serotype 9 alone or in association with Mycoplasma hyopneumoniae. Marois C; Gottschalk M; Morvan H; Fablet C; Madec F; Kobisch M Vet Microbiol; 2009 Mar; 135(3-4):283-91. PubMed ID: 18977616 [TBL] [Abstract][Full Text] [Related]
56. Differentiation of Actinobacillus pleuropneumoniae by PCR-REA based on sequence variability of the apxIVA gene and by ribotyping. Jaglic Z; Svastova P; Rychlik I; Nedbalcova K; Kucerova Z; Pavlik I; Bartos M Vet Microbiol; 2004 Oct; 103(1-2):63-9. PubMed ID: 15381267 [TBL] [Abstract][Full Text] [Related]
57. The roles of flp1 and tadD in Actinobacillus pleuropneumoniae pilus biosynthesis and pathogenicity. Li T; Zhang Q; Wang R; Zhang S; Pei J; Li Y; Li L; Zhou R Microb Pathog; 2019 Jan; 126():310-317. PubMed ID: 30419341 [TBL] [Abstract][Full Text] [Related]
58. Effect of bovine apo-lactoferrin on the growth and virulence of Actinobacillus pleuropneumoniae. Luna-Castro S; Aguilar-Romero F; Samaniego-Barrón L; Godínez-Vargas D; de la Garza M Biometals; 2014 Oct; 27(5):891-903. PubMed ID: 24878848 [TBL] [Abstract][Full Text] [Related]
59. Identification of dimethyl sulfoxide reductase in Actinobacillus pleuropneumoniae and its role in infection. Baltes N; Hennig-Pauka I; Jacobsen I; Gruber AD; Gerlach GF Infect Immun; 2003 Dec; 71(12):6784-92. PubMed ID: 14638764 [TBL] [Abstract][Full Text] [Related]
60. Construction and immunogenicity of a ∆apxIC/ompP2 mutant of Actinobacillus pleuropneumoniae and Haemophilus parasuis. Liu Q; Gong Y; Cao Y; Wen X; Huang X; Yan Q; Huang Y; Cao S Onderstepoort J Vet Res; 2013 Mar; 80(1):519. PubMed ID: 23718128 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]