These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 19217370)

  • 1. Hooked on the D3 receptor: CaMKII's new addiction.
    Hell JW
    Neuron; 2009 Feb; 61(3):335-6. PubMed ID: 19217370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-dependent modulation of limbic dopamine D3 receptors by CaMKII.
    Liu XY; Mao LM; Zhang GC; Papasian CJ; Fibuch EE; Lan HX; Zhou HF; Xu M; Wang JQ
    Neuron; 2009 Feb; 61(3):425-38. PubMed ID: 19217379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopaminergic denervation switches dopamine D3 receptor signaling and disrupts its Ca(2+) dependent modulation by CaMKII and calmodulin in striatonigral projections of the rat.
    Avalos-Fuentes A; Albarrán-Bravo S; Loya-Lopéz S; Cortés H; Recillas-Morales S; Magaña JJ; Paz-Bermúdez F; Rangel-Barajas C; Aceves J; Erlij D; Florán B
    Neurobiol Dis; 2015 Feb; 74():336-46. PubMed ID: 25517101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual alteration of limbic dopamine D1 receptor-mediated signalling and the Akt/GSK3 pathway in dopamine D3 receptor mutants during the development of methamphetamine sensitization.
    Chen PC; Lao CL; Chen JC
    J Neurochem; 2007 Jan; 100(1):225-41. PubMed ID: 17101033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent anatomical pattern of D1 and D3 binding and dopamine- and cyclic AMP-regulated phosphoprotein of 32 kDa mRNA expression in the Roman rat strains: Implications for drug addiction.
    Guitart-Masip M; Johansson B; Fernández-Teruel A; Cañete T; Tobeña A; Terenius L; Giménez-Llort L
    Neuroscience; 2006 Nov; 142(4):1231-43. PubMed ID: 17008016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of dopamine D3 receptors by protein-protein interactions.
    Guo ML; Liu XY; Mao LM; Wang JQ
    Neurosci Bull; 2010 Apr; 26(2):163-7. PubMed ID: 20332822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular genetic probing of dopamine receptors in drug addiction.
    Xu M; Zhang J
    Curr Opin Drug Discov Devel; 2004 Sep; 7(5):703-8. PubMed ID: 15503872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible participation of D3 and D4 dopaminergic receptors on genital reflexes induced by cocaine in paradoxical sleep deprived male rats.
    Andersen ML; Perry JC; Tufik S
    Scand J Psychol; 2007 Dec; 48(6):443-7. PubMed ID: 18028066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis.
    Keck TM; John WS; Czoty PW; Nader MA; Newman AH
    J Med Chem; 2015 Jul; 58(14):5361-80. PubMed ID: 25826710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphetamine decreases behavioral inhibition by stimulation of dopamine D2, but not D3, receptors.
    van Gaalen MM; Unger L; Jongen-Rêlo AL; Schoemaker H; Gross G
    Behav Pharmacol; 2009 Sep; 20(5-6):484-91. PubMed ID: 19696659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DCP-LA stimulates AMPA receptor exocytosis through CaMKII activation due to PP-1 inhibition.
    Kanno T; Yaguchi T; Nagata T; Tanaka A; Nishizaki T
    J Cell Physiol; 2009 Oct; 221(1):183-8. PubMed ID: 19492412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine A(2A) receptors and their role in drug addiction.
    Brown RM; Short JL
    J Pharm Pharmacol; 2008 Nov; 60(11):1409-30. PubMed ID: 18957161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of CaMKII and ERK Signaling in Addiction.
    Jia W; Kawahata I; Cheng A; Fukunaga K
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33804804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calmodulin kinase II activation of mitogen-activated protein kinase in PC12 cell following all-trans retinoic acid treatment.
    Liu J; Zhou R; He Q; Li WI; Zhang T; Niu B; Zheng X; Xie J
    Neurotoxicology; 2009 Jul; 30(4):599-604. PubMed ID: 19635392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of psychostimulant addiction.
    Chen JC; Chen PC; Chiang YC
    Chang Gung Med J; 2009; 32(2):148-54. PubMed ID: 19403004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nobiletin improves brain ischemia-induced learning and memory deficits through stimulation of CaMKII and CREB phosphorylation.
    Yamamoto Y; Shioda N; Han F; Moriguchi S; Nakajima A; Yokosuka A; Mimaki Y; Sashida Y; Yamakuni T; Ohizumi Y; Fukunaga K
    Brain Res; 2009 Oct; 1295():218-29. PubMed ID: 19646972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The calcium/calmodulin/kinase system and arrhythmogenic afterdepolarizations in bradycardia-related acquired long-QT syndrome.
    Qi X; Yeh YH; Chartier D; Xiao L; Tsuji Y; Brundel BJ; Kodama I; Nattel S
    Circ Arrhythm Electrophysiol; 2009 Jun; 2(3):295-304. PubMed ID: 19808480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug dependence as a disorder of neural plasticity: focus on dopamine and glutamate.
    Pulvirenti L; Diana M
    Rev Neurosci; 2001; 12(2):141-58. PubMed ID: 11392455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Dopamine and addictive diseases].
    Ferger B; Havemann-Reinecke U; Kuschinsky K
    Med Monatsschr Pharm; 1997 Nov; 20(11):300-9. PubMed ID: 9527597
    [No Abstract]   [Full Text] [Related]  

  • 20. Desflurane-induced postconditioning is mediated by beta-adrenergic signaling: role of beta 1- and beta 2-adrenergic receptors, protein kinase A, and calcium/calmodulin-dependent protein kinase II.
    Lange M; Redel A; Lotz C; Smul TM; Blomeyer C; Frank A; Stumpner J; Roewer N; Kehl F
    Anesthesiology; 2009 Mar; 110(3):516-28. PubMed ID: 19225392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.