These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19217388)

  • 1. Wheel of Life, Wheel of Death: A Mechanistic Insight into Signaling by STAND Proteins.
    Danot O; Marquenet E; Vidal-Ingigliardi D; Richet E
    Structure; 2009 Feb; 17(2):172-82. PubMed ID: 19217388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2004 Oct; 343(1):1-28. PubMed ID: 15381417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide-dependent conformational changes and assembly of the AAA ATPase SKD1/VPS4B.
    Inoue M; Kamikubo H; Kataoka M; Kato R; Yoshimori T; Wakatsuki S; Kawasaki M
    Traffic; 2008 Dec; 9(12):2180-9. PubMed ID: 18796009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inducer maltotriose binds in the central cavity of the tetratricopeptide-like sensor domain of MalT, a bacterial STAND transcription factor.
    Danot O
    Mol Microbiol; 2010 Aug; 77(3):628-41. PubMed ID: 20545845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The NOD: a signaling module that regulates apoptosis and host defense against pathogens.
    Inohara N; Nuñez G
    Oncogene; 2001 Oct; 20(44):6473-81. PubMed ID: 11607846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle.
    Rouiller I; DeLaBarre B; May AP; Weis WI; Brunger AT; Milligan RA; Wilson-Kubalek EM
    Nat Struct Biol; 2002 Dec; 9(12):950-7. PubMed ID: 12434150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved motifs involved in ATP hydrolysis by MalT, a signal transduction ATPase with numerous domains from Escherichia coli.
    Marquenet E; Richet E
    J Bacteriol; 2010 Oct; 192(19):5181-91. PubMed ID: 20693326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How 'arm-twisting' by the inducer triggers activation of the MalT transcription factor, a typical signal transduction ATPase with numerous domains (STAND).
    Danot O
    Nucleic Acids Res; 2015 Mar; 43(6):3089-99. PubMed ID: 25740650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PDZ domains: folding and binding.
    Jemth P; Gianni S
    Biochemistry; 2007 Jul; 46(30):8701-8. PubMed ID: 17620015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dual role for the inducer in signalling by MalT, a signal transduction ATPase with numerous domains (STAND).
    Liu P; Danot O; Richet E
    Mol Microbiol; 2013 Dec; 90(6):1309-23. PubMed ID: 24134781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptor protein controlled oligomerization activates the AAA+ protein ClpC.
    Kirstein J; Schlothauer T; Dougan DA; Lilie H; Tischendorf G; Mogk A; Bukau B; Turgay K
    EMBO J; 2006 Apr; 25(7):1481-91. PubMed ID: 16525504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. To nibble at plant resistance proteins.
    Takken FL; Tameling WI
    Science; 2009 May; 324(5928):744-6. PubMed ID: 19423813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotary molecular motors.
    Wilkens S
    Adv Protein Chem; 2005; 71():345-82. PubMed ID: 16230116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change.
    Davies JM; Brunger AT; Weis WI
    Structure; 2008 May; 16(5):715-26. PubMed ID: 18462676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Structure, function and mechanisms of action of ATPases from the AAA superfamily of proteins].
    Kedzierska S
    Postepy Biochem; 2006; 52(3):330-8. PubMed ID: 17201069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic control of signaling by modular adaptor proteins.
    Pawson T
    Curr Opin Cell Biol; 2007 Apr; 19(2):112-6. PubMed ID: 17317137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-component signaling in the AAA + ATPase DctD: binding Mg2+ and BeF3- selects between alternate dimeric states of the receiver domain.
    Park S; Meyer M; Jones AD; Yennawar HP; Yennawar NH; Nixon BT
    FASEB J; 2002 Dec; 16(14):1964-6. PubMed ID: 12368235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double autoinhibition mechanism of signal transduction ATPases with numerous domains (STAND) with a tetratricopeptide repeat sensor.
    Lisa MN; Cvirkaite-Krupovic V; Richet E; André-Leroux G; Alzari PM; Haouz A; Danot O
    Nucleic Acids Res; 2019 Apr; 47(7):3795-3810. PubMed ID: 30788511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AAA+ proteins: have engine, will work.
    Hanson PI; Whiteheart SW
    Nat Rev Mol Cell Biol; 2005 Jul; 6(7):519-29. PubMed ID: 16072036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of Mg-ATPase nucleotide-binding domain at 1.6 A resolution reveals a unique ATP-binding motif.
    Håkansson KO
    Acta Crystallogr D Biol Crystallogr; 2009 Nov; 65(Pt 11):1181-6. PubMed ID: 19923713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.