These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

671 related articles for article (PubMed ID: 19217636)

  • 1. Measuring derived acoustic power of an ultrasound surgical device in the linear and nonlinear operating modes.
    Petosić A; Ivancević B; Svilar D
    Ultrasonics; 2009 Jun; 49(6-7):522-31. PubMed ID: 19217636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for measuring acoustic power of an ultrasonic neurosurgical device.
    Petosić A; Ivancević B; Svilar D; Stimac T; Paladino J; Oresković D; Jurjević I; Klarica M
    Coll Antropol; 2011 Jan; 35 Suppl 1():107-13. PubMed ID: 21648319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromechanical, acoustical and thermodynamical characterization of a low-frequency sonotrode-type transducer in a small sonoreactor at different excitation levels and loading conditions.
    Petošić A; Horvat M; Režek Jambrak A
    Ultrason Sonochem; 2017 Nov; 39():219-232. PubMed ID: 28732939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of frequency domain and time domain methods for the numerical simulation of contactless ultrasonic cavitation.
    Beckwith C; Djambazov G; Pericleous K; Tonry C
    Ultrason Sonochem; 2022 Sep; 89():106138. PubMed ID: 36049449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical investigation of the mean acoustic pressure in the cavitation field.
    Campos-Pozuelo C; Granger C; Vanhille C; Moussatov A; Dubus B
    Ultrason Sonochem; 2005 Jan; 12(1-2):79-84. PubMed ID: 15474956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D; Grant PS
    Ultrason Sonochem; 2019 Jul; 55():243-255. PubMed ID: 30733147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast prediction of pulsed nonlinear acoustic fields from clinically relevant sources using time-averaged wave envelope approach: comparison of numerical simulations and experimental results.
    Wójcik J; Kujawska T; Nowicki A; Lewin PA
    Ultrasonics; 2008 Dec; 48(8):707-15. PubMed ID: 18474387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a reference ultrasonic cavitation vessel: Part 2--investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field.
    Hodnett M; Zeqiri B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1809-22. PubMed ID: 18986923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavitation and acoustic streaming generated by different sonotrode tips.
    Fang Y; Yamamoto T; Komarov S
    Ultrason Sonochem; 2018 Nov; 48():79-87. PubMed ID: 30080589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.
    Chen H; Li X; Wan M
    Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation and measurement of nonlinear behavior in a high-power test cell.
    Harvey G; Gachagan A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):808-19. PubMed ID: 21507758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavitation activation by dual-frequency ultrasound and shock waves.
    Brotchie A; Mettin R; Grieser F; Ashokkumar M
    Phys Chem Chem Phys; 2009 Nov; 11(43):10029-34. PubMed ID: 19865755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the cavitation development and acoustic spectrum in various liquids.
    Tzanakis I; Lebon GS; Eskin DG; Pericleous KA
    Ultrason Sonochem; 2017 Jan; 34():651-662. PubMed ID: 27773292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification approach of acoustic cavitation via frequency spectrum of sound pressure wave signals in numerical simulation.
    Lin W; Xiao J; Wen J; Wang S
    Ultrason Sonochem; 2022 Nov; 90():106182. PubMed ID: 36209636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic emissions during 3.1 MHz ultrasound bulk ablation in vitro.
    Mast TD; Salgaonkar VA; Karunakaran C; Besse JA; Datta S; Holland CK
    Ultrasound Med Biol; 2008 Sep; 34(9):1434-48. PubMed ID: 18420337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of cavitation under ultrasonic horn tip - Proposition of an acoustic cavitation parameter.
    Kozmus G; Zevnik J; Hočevar M; Dular M; Petkovšek M
    Ultrason Sonochem; 2022 Sep; 89():106159. PubMed ID: 36099775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1262-70. PubMed ID: 15553510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-contact method for analysis of cavitating flows.
    Biluš I; Bizjan B; Lešnik L; Širok B; Pečnik B; Dular M
    Ultrasonics; 2017 Nov; 81():178-186. PubMed ID: 28711033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues.
    Qin D; Zou Q; Lei S; Wang W; Li Z
    Ultrason Sonochem; 2021 Oct; 78():105712. PubMed ID: 34391164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.