These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 19217680)

  • 1. Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions.
    Jiménez-Martí E; Zuzuarregui A; Ridaura I; Lozano N; del Olmo M
    Int J Food Microbiol; 2009 Mar; 130(2):122-30. PubMed ID: 19217680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of stress response genes in wine strains with different fermentative behavior.
    Zuzuarregui A; del Olmo ML
    FEMS Yeast Res; 2004 May; 4(7):699-710. PubMed ID: 15093773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel approach for the improvement of stress resistance in wine yeasts.
    Cardona F; Carrasco P; Pérez-Ortín JE; del Olmo Ml; Aranda A
    Int J Food Microbiol; 2007 Feb; 114(1):83-91. PubMed ID: 17187885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the expression of some stress induced genes in several commercial wine yeast strains at the beginning of vinification.
    Zuzuarregui A; Carrasco P; Palacios A; Julien A; del Olmo M
    J Appl Microbiol; 2005; 98(2):299-307. PubMed ID: 15659184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection.
    Zuzuarregui A; del Olmo M
    Antonie Van Leeuwenhoek; 2004 May; 85(4):271-80. PubMed ID: 15028866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C; Cárdenas J; Melo F; Agosin E
    Yeast; 2005 Apr; 22(5):369-83. PubMed ID: 15806604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift.
    Puig S; Pérez-Ortín JE
    Yeast; 2000 Jan; 16(2):139-48. PubMed ID: 10641036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation.
    Riou C; Nicaud JM; Barre P; Gaillardin C
    Yeast; 1997 Aug; 13(10):903-15. PubMed ID: 9271106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway.
    Aranda A; del Olmo Ml Ml
    Yeast; 2003 Jun; 20(8):747-59. PubMed ID: 12794936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between acetaldehyde and ethanol resistance and expression of HSP genes in yeast strains isolated during the biological aging of sherry wines.
    Aranda A; Querol A; del Olmo Ml
    Arch Microbiol; 2002 Apr; 177(4):304-12. PubMed ID: 11889484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Ccw7p cell wall proteins and the encoding genes of Saccharomyces cerevisiae wine yeast strains: relevance for flor formation.
    Kovács M; Stuparevic I; Mrsa V; Maráz A
    FEMS Yeast Res; 2008 Nov; 8(7):1115-26. PubMed ID: 18657192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of csc1-1. A plausible strategy to obtain wine yeast strains undergoing accelerated autolysis.
    Cebollero E; Martinez-Rodriguez A; Carrascosa AV; Gonzalez R
    FEMS Microbiol Lett; 2005 May; 246(1):1-9. PubMed ID: 15869955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.
    Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11.
    Watanabe M; Tamura K; Magbanua JP; Takano K; Kitamoto K; Kitagaki H; Akao T; Shimoi H
    J Biosci Bioeng; 2007 Sep; 104(3):163-70. PubMed ID: 17964478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the stress resistance of commercial wine yeast strains.
    Carrasco P; Querol A; del Olmo M
    Arch Microbiol; 2001 Jun; 175(6):450-7. PubMed ID: 11491086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate.
    Bentley NJ; Fitch IT; Tuite MF
    Yeast; 1992 Feb; 8(2):95-106. PubMed ID: 1561840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Saccharomyces cerevisiae fermentation stress response protein Igd1p/Yfr017p regulates glycogen levels by inhibiting the glycogen debranching enzyme.
    Walkey CJ; Luo Z; Borchers CH; Measday V; van Vuuren HJ
    FEMS Yeast Res; 2011 Sep; 11(6):499-508. PubMed ID: 21585652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between cell lipid content, gene expression and fermentative behaviour of two Saccharomyces cerevisiae wine strains.
    Zara G; Bardi L; Belviso S; Farris GA; Zara S; Budroni M
    J Appl Microbiol; 2008 Mar; 104(3):906-14. PubMed ID: 17961155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex.
    Belloch C; Orlic S; Barrio E; Querol A
    Int J Food Microbiol; 2008 Feb; 122(1-2):188-95. PubMed ID: 18222562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.