These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 19218245)
1. Transforming growth factor-{beta}-inducible phosphorylation of Smad3. Wang G; Matsuura I; He D; Liu F J Biol Chem; 2009 Apr; 284(15):9663-73. PubMed ID: 19218245 [TBL] [Abstract][Full Text] [Related]
2. Constitutive Smad linker phosphorylation in melanoma: a mechanism of resistance to transforming growth factor-β-mediated growth inhibition. Cohen-Solal KA; Merrigan KT; Chan JL; Goydos JS; Chen W; Foran DJ; Liu F; Lasfar A; Reiss M Pigment Cell Melanoma Res; 2011 Jun; 24(3):512-24. PubMed ID: 21477078 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation status at Smad3 linker region modulates transforming growth factor-β-induced epithelial-mesenchymal transition and cancer progression. Ooshima A; Park J; Kim SJ Cancer Sci; 2019 Feb; 110(2):481-488. PubMed ID: 30589983 [TBL] [Abstract][Full Text] [Related]
4. Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Liu X; Sun Y; Constantinescu SN; Karam E; Weinberg RA; Lodish HF Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10669-74. PubMed ID: 9380693 [TBL] [Abstract][Full Text] [Related]
5. Transforming growth factor β-mediated site-specific Smad linker region phosphorylation in vascular endothelial cells. Kamato D; Rostam MA; Piva TJ; Babaahmadi Rezaei H; Getachew R; Thach L; Bernard R; Zheng W; Little PJ; Osman N J Pharm Pharmacol; 2014 Dec; 66(12):1722-33. PubMed ID: 25316549 [TBL] [Abstract][Full Text] [Related]
6. Pin1 promotes transforming growth factor-beta-induced migration and invasion. Matsuura I; Chiang KN; Lai CY; He D; Wang G; Ramkumar R; Uchida T; Ryo A; Lu K; Liu F J Biol Chem; 2010 Jan; 285(3):1754-64. PubMed ID: 19920136 [TBL] [Abstract][Full Text] [Related]
7. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Furukawa F; Matsuzaki K; Mori S; Tahashi Y; Yoshida K; Sugano Y; Yamagata H; Matsushita M; Seki T; Inagaki Y; Nishizawa M; Fujisawa J; Inoue K Hepatology; 2003 Oct; 38(4):879-89. PubMed ID: 14512875 [TBL] [Abstract][Full Text] [Related]
8. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle. Rezaei HB; Kamato D; Ansari G; Osman N; Little PJ Clin Exp Pharmacol Physiol; 2012 Aug; 39(8):661-7. PubMed ID: 21883378 [TBL] [Abstract][Full Text] [Related]
9. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer. Matsuzaki K; Kitano C; Murata M; Sekimoto G; Yoshida K; Uemura Y; Seki T; Taketani S; Fujisawa J; Okazaki K Cancer Res; 2009 Jul; 69(13):5321-30. PubMed ID: 19531654 [TBL] [Abstract][Full Text] [Related]
11. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204. Millet C; Yamashita M; Heller M; Yu LR; Veenstra TD; Zhang YE J Biol Chem; 2009 Jul; 284(30):19808-16. PubMed ID: 19458083 [TBL] [Abstract][Full Text] [Related]
12. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Matsuura I; Denissova NG; Wang G; He D; Long J; Liu F Nature; 2004 Jul; 430(6996):226-31. PubMed ID: 15241418 [TBL] [Abstract][Full Text] [Related]
13. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. Nakao A; Imamura T; Souchelnytskyi S; Kawabata M; Ishisaki A; Oeda E; Tamaki K; Hanai J; Heldin CH; Miyazono K; ten Dijke P EMBO J; 1997 Sep; 16(17):5353-62. PubMed ID: 9311995 [TBL] [Abstract][Full Text] [Related]
15. Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. Piek E; Ju WJ; Heyer J; Escalante-Alcalde D; Stewart CL; Weinstein M; Deng C; Kucherlapati R; Bottinger EP; Roberts AB J Biol Chem; 2001 Jun; 276(23):19945-53. PubMed ID: 11262418 [TBL] [Abstract][Full Text] [Related]
16. Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells. Bae E; Kim SJ; Hong S; Liu F; Ooshima A Biochem Biophys Res Commun; 2012 Oct; 427(3):593-9. PubMed ID: 23022526 [TBL] [Abstract][Full Text] [Related]
17. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation. Kamato D; Burch ML; Piva TJ; Rezaei HB; Rostam MA; Xu S; Zheng W; Little PJ; Osman N Cell Signal; 2013 Oct; 25(10):2017-24. PubMed ID: 23770288 [TBL] [Abstract][Full Text] [Related]
18. The phosphorylation of the Smad2/3 linker region by nemo-like kinase regulates TGF-β signaling. Liang J; Zhou Y; Zhang N; Wang D; Cheng X; Li K; Huang R; Lu Y; Wang H; Han D; Wu W; Han M; Miao S; Wang L; Zhao H; Song W J Biol Chem; 2021; 296():100512. PubMed ID: 33676893 [TBL] [Abstract][Full Text] [Related]
19. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Yoshida K; Matsuzaki K; Mori S; Tahashi Y; Yamagata H; Furukawa F; Seki T; Nishizawa M; Fujisawa J; Okazaki K Am J Pathol; 2005 Apr; 166(4):1029-39. PubMed ID: 15793284 [TBL] [Abstract][Full Text] [Related]
20. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells. Hayashida T; Decaestecker M; Schnaper HW FASEB J; 2003 Aug; 17(11):1576-8. PubMed ID: 12824291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]