These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 19218315)

  • 21. A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "Pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis.
    Rodrigo MJ; Lado J; Alós E; Alquézar B; Dery O; Hirschberg J; Zacarías L
    BMC Plant Biol; 2019 Nov; 19(1):465. PubMed ID: 31684878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type.
    Wu J; Fu L; Yi H
    PLoS One; 2016; 11(4):e0154330. PubMed ID: 27104786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck).
    Pan Z; Liu Q; Yun Z; Guan R; Zeng W; Xu Q; Deng X
    Proteomics; 2009 Dec; 9(24):5455-70. PubMed ID: 19834898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange.
    Qiao L; Cao M; Zheng J; Zhao Y; Zheng ZL
    BMC Plant Biol; 2017 Oct; 17(1):186. PubMed ID: 29084509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara.
    Alquezar B; Rodrigo MJ; Zacarías L
    Phytochemistry; 2008 Jul; 69(10):1997-2007. PubMed ID: 18538806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative transcript profiling of gene expression between seedless Ponkan mandarin and its seedy wild type during floral organ development by suppression subtractive hybridization and cDNA microarray.
    Qiu WM; Zhu AD; Wang Y; Chai LJ; Ge XX; Deng XX; Guo WW
    BMC Genomics; 2012 Aug; 13():397. PubMed ID: 22897898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico identification and characterization of AGO, DCL and RDR gene families and their associated regulatory elements in sweet orange (Citrus sinensis L.).
    Mosharaf MP; Rahman H; Ahsan MA; Akond Z; Ahmed FF; Islam MM; Moni MA; Mollah MNH
    PLoS One; 2020; 15(12):e0228233. PubMed ID: 33347517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular cloning and functional characterization of genes associated with flowering in citrus using an early-flowering trifoliate orange (Poncirus trifoliata L. Raf.) mutant.
    Zhang JZ; Ai XY; Sun LM; Zhang DL; Guo WW; Deng XX; Hu CG
    Plant Mol Biol; 2011 May; 76(1-2):187-204. PubMed ID: 21533840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration.
    Romero P; Lafuente MT; Rodrigo MJ
    J Exp Bot; 2012 Aug; 63(13):4931-45. PubMed ID: 22888124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-Wide Characterization and Expression Analysis of the
    Song N; Cheng Y; Peng W; Peng E; Zhao Z; Liu T; Yi T; Dai L; Wang B; Hong Y
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Transcriptome and sRNAome Analyses Reveal the Regulatory Mechanisms of Fruit Ripening in a Spontaneous Early-Ripening Navel Orange Mutant and Its Wild Type.
    Mi L; Ma D; Lv S; Xu S; Zhong B; Peng T; Liu D; Liu Y
    Genes (Basel); 2022 Sep; 13(10):. PubMed ID: 36292591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Difference of a citrus late-ripening mutant (Citrus sinensis) from its parental line in sugar and acid metabolism at the fruit ripening stage.
    Liu Y; Liu Q; Xiong J; Deng X
    Sci China C Life Sci; 2007 Aug; 50(4):511-7. PubMed ID: 17653673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comprehensive insights on how 2,4-dichlorophenoxyacetic acid retards senescence in post-harvest citrus fruits using transcriptomic and proteomic approaches.
    Ma Q; Ding Y; Chang J; Sun X; Zhang L; Wei Q; Cheng Y; Chen L; Xu J; Deng X
    J Exp Bot; 2014 Jan; 65(1):61-74. PubMed ID: 24215076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvements of PCD and changes in gene expression profile during self-pruning of spring shoots in sweet orange (Citrus sinensis).
    Zhang JZ; Zhao K; Ai XY; Hu CG
    BMC Genomics; 2014 Oct; 15(1):892. PubMed ID: 25308090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide identification and characterization of flowering genes in Citrus sinensis (L.) Osbeck: a comparison among C. Medica L., C. Reticulata Blanco, C. Grandis (L.) Osbeck and C. Clementina.
    Kaur H; Manchanda P; Sidhu GS; Chhuneja P
    BMC Genom Data; 2024 Feb; 25(1):20. PubMed ID: 38378481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of cuticular wax constituents and genes that contribute to the formation of 'glossy Newhall', a spontaneous bud mutant from the wild-type 'Newhall' navel orange.
    Liu D; Yang L; Zheng Q; Wang Y; Wang M; Zhuang X; Wu Q; Liu C; Liu S; Liu Y
    Plant Mol Biol; 2015 Aug; 88(6):573-90. PubMed ID: 26177912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide analysis of AGO, DCL and RDR gene families reveals RNA-directed DNA methylation is involved in fruit abscission in Citrus sinensis.
    Sabbione A; Daurelio L; Vegetti A; Talón M; Tadeo F; Dotto M
    BMC Plant Biol; 2019 Sep; 19(1):401. PubMed ID: 31510935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive analysis of expressed sequence tags from the pulp of the red mutant 'Cara Cara' navel orange (Citrus sinensis Osbeck).
    Ye JL; Zhu AD; Tao NG; Xu Q; Xu J; Deng XX
    J Integr Plant Biol; 2010 Oct; 52(10):856-67. PubMed ID: 20883438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of differentially expressed genes in dormant (banjhi) bud of tea (Camellia sinensis (L.) O. Kuntze) using subtractive hybridization approach.
    Krishnaraj T; Gajjeraman P; Palanisamy S; Subhas Chandrabose SR; Azad Mandal AK
    Plant Physiol Biochem; 2011 Jun; 49(6):565-71. PubMed ID: 21481598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Timing of the inhibitory effect of fruit on return bloom of 'Valencia' sweet orange (Citrus sinensis (L.) Osbeck).
    Martínez-Fuentes A; Mesejo C; Reig C; Agustí M
    J Sci Food Agric; 2010 Aug; 90(11):1936-43. PubMed ID: 20564309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.