These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 19218526)
1. The relationships between muscle, external, internal and joint mechanical work during normal walking. Sasaki K; Neptune RR; Kautz SA J Exp Biol; 2009 Mar; 212(Pt 5):738-44. PubMed ID: 19218526 [TBL] [Abstract][Full Text] [Related]
2. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
3. Muscle work is increased in pre-swing during hemiparetic walking. Peterson CL; Kautz SA; Neptune RR Clin Biomech (Bristol); 2011 Oct; 26(8):859-66. PubMed ID: 21605927 [TBL] [Abstract][Full Text] [Related]
4. Influence of musculotendon geometry variability in muscle forces and hip bone-on-bone forces during walking. Martín-Sosa E; Martínez-Reina J; Mayo J; Ojeda J PLoS One; 2019; 14(9):e0222491. PubMed ID: 31553756 [TBL] [Abstract][Full Text] [Related]
5. Forward dynamics simulations provide insight into muscle mechanical work during human locomotion. Neptune RR; McGowan CP; Kautz SA Exerc Sport Sci Rev; 2009 Oct; 37(4):203-10. PubMed ID: 19955870 [TBL] [Abstract][Full Text] [Related]
6. Estimates of individual muscle power production in normal adult walking. Bogey RA; Barnes LA J Neuroeng Rehabil; 2017 Sep; 14(1):92. PubMed ID: 28893285 [TBL] [Abstract][Full Text] [Related]
7. Fibre operating lengths of human lower limb muscles during walking. Arnold EM; Delp SL Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1530-9. PubMed ID: 21502124 [TBL] [Abstract][Full Text] [Related]
8. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? Valente G; Pitto L; Testi D; Seth A; Delp SL; Stagni R; Viceconti M; Taddei F PLoS One; 2014; 9(11):e112625. PubMed ID: 25390896 [TBL] [Abstract][Full Text] [Related]
9. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking. Fraysse F; Dumas R; Cheze L; Wang X J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling. Modenese L; Montefiori E; Wang A; Wesarg S; Viceconti M; Mazzà C J Biomech; 2018 May; 73():108-118. PubMed ID: 29673935 [TBL] [Abstract][Full Text] [Related]
11. A validated combined musculotendon path and muscle-joint kinematics model for the human hand. Ma'touq J; Hu T; Haddadin S Comput Methods Biomech Biomed Engin; 2019 May; 22(7):727-739. PubMed ID: 30880463 [TBL] [Abstract][Full Text] [Related]
12. A model of muscle-tendon function in human walking at self-selected speed. Endo K; Herr H IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689 [TBL] [Abstract][Full Text] [Related]
13. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking. Markowitz J; Herr H PLoS Comput Biol; 2016 May; 12(5):e1004912. PubMed ID: 27175486 [TBL] [Abstract][Full Text] [Related]
14. Functional resistance training during walking: Mode of application differentially affects gait biomechanics and muscle activation patterns. Washabaugh EP; Augenstein TE; Krishnan C Gait Posture; 2020 Jan; 75():129-136. PubMed ID: 31678694 [TBL] [Abstract][Full Text] [Related]
15. Joint moments and contact forces in the foot during walking. Kim Y; Lee KM; Koo S J Biomech; 2018 Jun; 74():79-85. PubMed ID: 29735264 [TBL] [Abstract][Full Text] [Related]
16. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion. Sartori M; Maculan M; Pizzolato C; Reggiani M; Farina D J Neurophysiol; 2015 Oct; 114(4):2509-27. PubMed ID: 26245321 [TBL] [Abstract][Full Text] [Related]
17. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait. Rajagopal A; Dembia CL; DeMers MS; Delp DD; Hicks JL; Delp SL IEEE Trans Biomed Eng; 2016 Oct; 63(10):2068-79. PubMed ID: 27392337 [TBL] [Abstract][Full Text] [Related]
18. Mechanics and energetics of incline walking with robotic ankle exoskeletons. Sawicki GS; Ferris DP J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208 [TBL] [Abstract][Full Text] [Related]
19. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait. Michaud F; Lamas M; Lugrís U; Cuadrado J J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205 [TBL] [Abstract][Full Text] [Related]
20. The effects of electromyography-assisted modelling in estimating musculotendon forces during gait in children with cerebral palsy. Veerkamp K; Schallig W; Harlaar J; Pizzolato C; Carty CP; Lloyd DG; van der Krogt MM J Biomech; 2019 Jul; 92():45-53. PubMed ID: 31153626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]