These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 19218526)
21. A comparison of muscle energy models for simulating human walking in three dimensions. Miller RH J Biomech; 2014 Apr; 47(6):1373-81. PubMed ID: 24581797 [TBL] [Abstract][Full Text] [Related]
22. It pays to have a spring in your step. Sawicki GS; Lewis CL; Ferris DP Exerc Sport Sci Rev; 2009 Jul; 37(3):130-8. PubMed ID: 19550204 [TBL] [Abstract][Full Text] [Related]
23. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton. Chen W; Wu S; Zhou T; Xiong C Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650 [TBL] [Abstract][Full Text] [Related]
24. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry. Bosmans L; Valente G; Wesseling M; Van Campen A; De Groote F; De Schutter J; Jonkers I J Biomech; 2015 Jul; 48(10):2116-23. PubMed ID: 25979383 [TBL] [Abstract][Full Text] [Related]
25. Identification of passive elastic joint moments in the lower extremities. Riener R; Edrich T J Biomech; 1999 May; 32(5):539-44. PubMed ID: 10327008 [TBL] [Abstract][Full Text] [Related]
26. The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking. Whittington B; Silder A; Heiderscheit B; Thelen DG Gait Posture; 2008 May; 27(4):628-34. PubMed ID: 17928228 [TBL] [Abstract][Full Text] [Related]
27. Muscle, ligament, and joint-contact forces at the knee during walking. Shelburne KB; Torry MR; Pandy MG Med Sci Sports Exerc; 2005 Nov; 37(11):1948-56. PubMed ID: 16286866 [TBL] [Abstract][Full Text] [Related]
28. How musculotendon architecture and joint geometry affect the capacity of muscles to move and exert force on objects: a review with application to arm and forearm tendon transfer design. Zajac FE J Hand Surg Am; 1992 Sep; 17(5):799-804. PubMed ID: 1401783 [TBL] [Abstract][Full Text] [Related]
29. Elastic ankle muscle-tendon interactions are adjusted to produce acceleration during walking in humans. Farris DJ; Raiteri BJ J Exp Biol; 2017 Nov; 220(Pt 22):4252-4260. PubMed ID: 28954818 [TBL] [Abstract][Full Text] [Related]
30. Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Thelen DG; Chumanov ES; Best TM; Swanson SC; Heiderscheit BC Med Sci Sports Exerc; 2005 Nov; 37(11):1931-8. PubMed ID: 16286864 [TBL] [Abstract][Full Text] [Related]
31. Experiment-guided tuning of muscle-tendon parameters to estimate muscle fiber lengths and passive forces. Luis I; Afschrift M; Gutierrez-Farewik EM Sci Rep; 2024 Jun; 14(1):14652. PubMed ID: 38918538 [TBL] [Abstract][Full Text] [Related]
32. A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. Hoy MG; Zajac FE; Gordon ME J Biomech; 1990; 23(2):157-69. PubMed ID: 2312520 [TBL] [Abstract][Full Text] [Related]
33. Mechanisms contributing to different joint moments observed during human walking. Simonsen EB; Dyhre-Poulsen P; Voigt M; Aagaard P; Fallentin N Scand J Med Sci Sports; 1997 Feb; 7(1):1-13. PubMed ID: 9089898 [TBL] [Abstract][Full Text] [Related]
34. Virtual slope control of a forward dynamic bipedal walker. Russell S; Granata KP; Sheth P J Biomech Eng; 2005 Feb; 127(1):114-22. PubMed ID: 15868794 [TBL] [Abstract][Full Text] [Related]
35. Reconstruction of human swing leg motion with passive biarticular muscle models. Ahmad Sharbafi M; Mohammadi Nejad Rashty A; Rode C; Seyfarth A Hum Mov Sci; 2017 Apr; 52():96-107. PubMed ID: 28182970 [TBL] [Abstract][Full Text] [Related]
36. Joint-level mechanics of the walk-to-run transition in humans. Pires NJ; Lay BS; Rubenson J J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752 [TBL] [Abstract][Full Text] [Related]
38. Flip-flops do not alter the neuromuscular function of the gastrocnemius muscle and tendon during walking in children. Maharaj JN; Barber L; Walsh HPJ; Carty CP Gait Posture; 2020 Mar; 77():83-88. PubMed ID: 32004950 [TBL] [Abstract][Full Text] [Related]
39. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. Sawicki GS; Ferris DP J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207 [TBL] [Abstract][Full Text] [Related]
40. Myoelectric Control for Adaptable Biomechanical Energy Harvesting. Selinger JC; Donelan JM IEEE Trans Neural Syst Rehabil Eng; 2016 Mar; 24(3):364-73. PubMed ID: 26841402 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]