These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19218533)

  • 1. Breakpoint graphs and ancestral genome reconstructions.
    Alekseyev MA; Pevzner PA
    Genome Res; 2009 May; 19(5):943-57. PubMed ID: 19218533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A statistically fair comparison of ancestral genome reconstructions, based on breakpoint and rearrangement distances.
    Adam Z; Sankoff D
    J Comput Biol; 2010 Sep; 17(9):1299-314. PubMed ID: 20874410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-scale evolution: reconstructing gene orders in the ancestral species.
    Bourque G; Pevzner PA
    Genome Res; 2002 Jan; 12(1):26-36. PubMed ID: 11779828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colored de Bruijn graphs and the genome halving problem.
    Alekseyev MA; Pevzner PA
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):98-107. PubMed ID: 17277417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of Ancestral Genomes in Presence of Gene Gain and Loss.
    Avdeyev P; Jiang S; Aganezov S; Hu F; Alekseyev MA
    J Comput Biol; 2016 Mar; 23(3):150-64. PubMed ID: 26885568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of ancestral gene orders using intermediate genomes.
    Feijão P
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S3. PubMed ID: 26451811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast ancestral gene order reconstruction of genomes with unequal gene content.
    Feijão P; Araujo E
    BMC Bioinformatics; 2016 Nov; 17(Suppl 14):413. PubMed ID: 28185578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast algorithm for the multiple genome rearrangement problem with weighted reversals and transpositions.
    Bader M; Abouelhoda MI; Ohlebusch E
    BMC Bioinformatics; 2008 Dec; 9():516. PubMed ID: 19055792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of avian ancestral karyotypes reveals differences in the evolutionary history of macro- and microchromosomes.
    Damas J; Kim J; Farré M; Griffin DK; Larkin DM
    Genome Biol; 2018 Oct; 19(1):155. PubMed ID: 30290830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes.
    Bourque G; Pevzner PA; Tesler G
    Genome Res; 2004 Apr; 14(4):507-16. PubMed ID: 15059991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Consensus Method for Ancestral Recombination Graphs.
    Kuhner MK; Yamato J
    J Mol Evol; 2017 Mar; 84(2-3):129-138. PubMed ID: 28285392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovering genome rearrangements in the mammalian phylogeny.
    Zhao H; Bourque G
    Genome Res; 2009 May; 19(5):934-42. PubMed ID: 19411607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ancestral Genomes: a resource for reconstructed ancestral genes and genomes across the tree of life.
    Huang X; Albou LP; Mushayahama T; Muruganujan A; Tang H; Thomas PD
    Nucleic Acids Res; 2019 Jan; 47(D1):D271-D279. PubMed ID: 30371900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing Yeasts Phylogenies and Ancestors from Whole Genome Data.
    Feng B; Lin Y; Zhou L; Guo Y; Friedman R; Xia R; Hu F; Liu C; Tang J
    Sci Rep; 2017 Nov; 7(1):15209. PubMed ID: 29123238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small parsimony for natural genomes in the DCJ-indel model.
    Doerr D; Chauve C
    J Bioinform Comput Biol; 2021 Dec; 19(6):2140009. PubMed ID: 34806948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene rearrangement analysis and ancestral order inference from chloroplast genomes with inverted repeat.
    Yue F; Cui L; dePamphilis CW; Moret BM; Tang J
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S25. PubMed ID: 18366615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes.
    Pevzner P; Tesler G
    Genome Res; 2003 Jan; 13(1):37-45. PubMed ID: 12529304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of ancestral genomic sequences using likelihood.
    Elias I; Tuller T
    J Comput Biol; 2007 Mar; 14(2):216-37. PubMed ID: 17456016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic signal from rearrangements in 18 Anopheles species by joint scaffolding extant and ancestral genomes.
    Anselmetti Y; Duchemin W; Tannier E; Chauve C; Bérard S
    BMC Genomics; 2018 May; 19(Suppl 2):96. PubMed ID: 29764366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstructing ancestral genomic sequences by co-evolution: formal definitions, computational issues, and biological examples.
    Tuller T; Birin H; Kupiec M; Ruppin E
    J Comput Biol; 2010 Sep; 17(9):1327-44. PubMed ID: 20874411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.