BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 19218651)

  • 1. Comparison of cellular and biochemical markers of airway inflammation in patients with mild-to-moderate asthma and chronic obstructive pulmonary disease: an induced sputum and bronchoalveolar lavage fluid study.
    Gorska K; Krenke R; Domagala-Kulawik J; Korczynski P; Nejman-Gryz P; Kosciuch J; Hildebrand K; Chazan R
    J Physiol Pharmacol; 2008 Dec; 59 Suppl 6():271-83. PubMed ID: 19218651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between airway inflammation and remodeling in patients with asthma and chronic obstructive pulmonary disease.
    Górska K; Krenke R; Kosciuch J; Korczynski P; Zukowska M; Domagala-Kulawik J; Maskey-Warzechowska M; Chazan R
    Eur J Med Res; 2009 Dec; 14 Suppl 4(Suppl 4):90-6. PubMed ID: 20156734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of airway inflammation using sputum, BAL, and endobronchial biopsies in current and ex-smokers with established COPD.
    Wen Y; Reid DW; Zhang D; Ward C; Wood-Baker R; Walters EH
    Int J Chron Obstruct Pulmon Dis; 2010 Oct; 5():327-34. PubMed ID: 21037956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulmonary function tests, sputum induction, and bronchial provocation tests: diagnostic tools in the challenge of distinguishing asthma and COPD phenotypes in clinical practice.
    Dima E; Rovina N; Gerassimou C; Roussos C; Gratziou C
    Int J Chron Obstruct Pulmon Dis; 2010 Sep; 5():287-96. PubMed ID: 20856828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of airway glucose in bacterial infections in patients with chronic obstructive pulmonary disease.
    Mallia P; Webber J; Gill SK; Trujillo-Torralbo MB; Calderazzo MA; Finney L; Bakhsoliani E; Farne H; Singanayagam A; Footitt J; Hewitt R; Kebadze T; Aniscenko J; Padmanaban V; Molyneaux PL; Adcock IM; Barnes PJ; Ito K; Elkin SL; Kon OM; Cookson WO; Moffat MF; Johnston SL; Tregoning JS
    J Allergy Clin Immunol; 2018 Sep; 142(3):815-823.e6. PubMed ID: 29310905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Inflammatory Mediators in Induced Sputum: Comparative Study in Asthma and COPD.
    Paplińska-Goryca M; Nejman-Gryz P; Górska K; Białek-Gosk K; Hermanowicz-Salamon J; Krenke R
    Adv Exp Med Biol; 2018; 1040():101-112. PubMed ID: 27739024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responsiveness of blood and sputum inflammatory cells in Japanese COPD patients, non-COPD smoking controls, and non-COPD nonsmoking controls.
    Kawayama T; Kinoshita T; Matsunaga K; Kobayashi A; Hayamizu T; Johnson M; Hoshino T
    Int J Chron Obstruct Pulmon Dis; 2016; 11():295-303. PubMed ID: 26929615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lung chitinolytic activity and chitotriosidase are elevated in chronic obstructive pulmonary disease and contribute to lung inflammation.
    Létuvé S; Kozhich A; Humbles A; Brewah Y; Dombret MC; Grandsaigne M; Adle H; Kolbeck R; Aubier M; Coyle AJ; Pretolani M
    Am J Pathol; 2010 Feb; 176(2):638-49. PubMed ID: 20042671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical and inflammatory characteristics of Asthma-COPD overlap in workers with occupational asthma.
    Ojanguren I; Moullec G; Hobeika J; Miravitlles M; Lemiere C
    PLoS One; 2018; 13(3):e0193144. PubMed ID: 29499062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adipose-derived stromal cell therapy affects lung inflammation and tracheal responsiveness in guinea pig model of COPD.
    Feizpour A; Boskabady MH; Ghorbani A
    PLoS One; 2014; 9(10):e108974. PubMed ID: 25330334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased airway iron parameters and risk for exacerbation in COPD: an analysis from SPIROMICS.
    Zhang WZ; Oromendia C; Kikkers SA; Butler JJ; O'Beirne S; Kim K; O'Neal WK; Freeman CM; Christenson SA; Peters SP; Wells JM; Doerschuk C; Putcha N; Barjaktarevic I; Woodruff PG; Cooper CB; Bowler RP; Comellas AP; Criner GJ; Paine R; Hansel NN; Han MK; Crystal RG; Kaner RJ; Ballman KV; Curtis JL; Martinez FJ; Cloonan SM
    Sci Rep; 2020 Jun; 10(1):10562. PubMed ID: 32601308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of sputum p38 MAPK is correlated with airway inflammation and reduced FEV1 in COPD patients.
    Huang C; Xie M; He X; Gao H
    Med Sci Monit; 2013 Dec; 19():1229-35. PubMed ID: 24382347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sputum microbiomic clustering in asthma and chronic obstructive pulmonary disease reveals a Haemophilus-predominant subgroup.
    Diver S; Richardson M; Haldar K; Ghebre MA; Ramsheh MY; Bafadhel M; Desai D; Cohen ES; Newbold P; Rapley L; Rugman P; Pavord ID; May RD; Barer M; Brightling CE
    Allergy; 2020 Apr; 75(4):808-817. PubMed ID: 31556120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Airway biomarkers of the oxidant burden in asthma and chronic obstructive pulmonary disease: current and future perspectives.
    Louhelainen N; Myllärniemi M; Rahman I; Kinnula VL
    Int J Chron Obstruct Pulmon Dis; 2008; 3(4):585-603. PubMed ID: 19281076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitronectin expression in the airways of subjects with asthma and chronic obstructive pulmonary disease.
    Salazar-Peláez LM; Abraham T; Herrera AM; Correa MA; Ortega JE; Paré PD; Seow CY
    PLoS One; 2015; 10(3):e0119717. PubMed ID: 25768308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further evidence of a type 2 inflammatory signature in chronic obstructive pulmonary disease or emphysema.
    Borish L; Teague WG; Patrie JT; Wavell KW; Barros AJ; Malpass HC; Lawrence MG
    Ann Allergy Asthma Immunol; 2023 May; 130(5):617-621.e1. PubMed ID: 36736724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated metabo-lipidomics profile of induced sputum for the identification of novel biomarkers in the differential diagnosis of asthma and COPD.
    Correnti S; Preianò M; Gamboni F; Stephenson D; Pelaia C; Pelaia G; Savino R; D'Alessandro A; Terracciano R
    J Transl Med; 2024 Mar; 22(1):301. PubMed ID: 38521955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and receptors in type 1, type 2 and type 17 inflammation in cross-sectional asthma study.
    Marks M; Steele C; Moore WC; Meyers DA; Rector B; Ampleford E; Bleecker ER; Hastie AT
    Thorax; 2020 Sep; 75(9):808-811. PubMed ID: 32482836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inflammation in sputum relates to progression of disease in subjects with COPD: a prospective descriptive study.
    Parr DG; White AJ; Bayley DL; Guest PJ; Stockley RA
    Respir Res; 2006 Nov; 7(1):136. PubMed ID: 17112387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sputum induction and its diagnostic applications in inflammatory airway disorders: a review.
    Goncalves B; Eze UA
    Front Allergy; 2023; 4():1282782. PubMed ID: 37901763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.