These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19219186)

  • 41. In situ organization of gold nanorods on mixed self-assembled-monolayer substrates.
    Zareie MH; Xu X; Cortie MB
    Small; 2007 Jan; 3(1):139-45. PubMed ID: 17294485
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spectral fractionation detection of gold nanorod contrast agents using optical coherence tomography.
    Jia Y; Liu G; Gordon AY; Gao SS; Pechauer AD; Stoddard J; McGill TJ; Jayagopal A; Huang D
    Opt Express; 2015 Feb; 23(4):4212-25. PubMed ID: 25836459
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of Absorption-Dominant Small Gold Nanorods and Their Plasmonic Properties.
    Jia H; Fang C; Zhu XM; Ruan Q; Wang YX; Wang J
    Langmuir; 2015 Jul; 31(26):7418-26. PubMed ID: 26079391
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons.
    McMahon JM; Henzie J; Odom TW; Schatz GC; Gray SK
    Opt Express; 2007 Dec; 15(26):18119-29. PubMed ID: 19551110
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.
    Hobbs RG; Yang Y; Fallahi A; Keathley PD; De Leo E; Kärtner FX; Graves WS; Berggren KK
    ACS Nano; 2014 Nov; 8(11):11474-82. PubMed ID: 25380557
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation and optical properties of worm-like gold nanorods.
    Huang H; He C; Zeng Y; Xia X; Yu X; Yi P; Chen Z
    J Colloid Interface Sci; 2008 Jun; 322(1):136-42. PubMed ID: 18400232
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of hybrid CdS-Au colloidal nanostructures.
    Saunders AE; Popov I; Banin U
    J Phys Chem B; 2006 Dec; 110(50):25421-9. PubMed ID: 17165989
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Label-free plasmonic detection of biomolecular binding by a single gold nanorod.
    Nusz GJ; Marinakos SM; Curry AC; Dahlin A; Höök F; Wax A; Chilkoti A
    Anal Chem; 2008 Feb; 80(4):984-9. PubMed ID: 18197636
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasmon Modes Induced by Anisotropic Gap Opening in Au@Cu2 O Nanorods.
    Zhang S; Jiang R; Guo Y; Yang B; Chen XL; Wang J; Zhao Y
    Small; 2016 Aug; 12(31):4264-76. PubMed ID: 27374920
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods.
    Huang H; Tang C; Zeng Y; Yu X; Liao B; Xia X; Yi P; Chu PK
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):96-101. PubMed ID: 19211228
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fourier Transform Surface Plasmon Resonance (FTSPR) with Gyromagnetic Plasmonic Nanorods.
    Jung I; Yoo H; Jang HJ; Cho S; Lee K; Hong S; Park S
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1841-1845. PubMed ID: 29266670
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions.
    Zheng Y; Xiao M; Jiang S; Ding F; Wang J
    Nanoscale; 2013 Jan; 5(2):788-95. PubMed ID: 23235518
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film.
    Baudrion AL; de Léon-Pérez F; Mahboub O; Hohenau A; Ditlbacher H; García-Vidal FJ; Dintinger J; Ebbesen TW; Martin-Moreno L; Krenn JR
    Opt Express; 2008 Mar; 16(5):3420-9. PubMed ID: 18542433
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis.
    Mei Z; Tang L
    Anal Chem; 2017 Jan; 89(1):633-639. PubMed ID: 27991768
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Si nanorod length dependent surface Raman scattering linewidth broadening and peak shift.
    Lin GR; Lin YH; Pai YH; Meng FS
    Opt Express; 2011 Jan; 19(2):597-605. PubMed ID: 21263599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient excitation of surface plasmons in metal nanorods using large longitudinal component of high index nano fibers.
    Ruan Y; Afshar SV; Monro TM
    Opt Express; 2011 Jul; 19(14):13464-79. PubMed ID: 21747502
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres.
    Shao L; Fang C; Chen H; Man YC; Wang J; Lin HQ
    Nano Lett; 2012 Mar; 12(3):1424-30. PubMed ID: 22268670
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sensing capability of the localized surface plasmon resonance of gold nanorods.
    Chen CD; Cheng SF; Chau LK; Wang CR
    Biosens Bioelectron; 2007 Jan; 22(6):926-32. PubMed ID: 16697633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficiency and finite size effects in enhanced transmission through subwavelength apertures.
    Przybilla F; Degiron A; Genet C; Ebbesen T; de Léon-Pérez F; Bravo-Abad J; García-Vidal FJ; Martín-Moreno L
    Opt Express; 2008 Jun; 16(13):9571-9. PubMed ID: 18575524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker.
    Huang X; El-Sayed IH; Qian W; El-Sayed MA
    Nano Lett; 2007 Jun; 7(6):1591-7. PubMed ID: 17474783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.